الجمهورية الجزائرية الديمقراطية الشعبية

مديرية التربية لولاية الشلف

: تسبير واقتصاد

وزارة التربية الوطنية امتحان البكالوريا التجريبي

التاريخ : 03 2012

السنة الدراسية: 2011 – 2012

ثانوية بلحاج قاسم نور الدين

اختبار في مادة الرياضيات

على كل مترشح أن يختار أحد الموضوعين التاليين

التمرين الأول:

 $u_{n+1} = \frac{1}{2}u_n + \frac{3}{2}$ ، $u_n = 0$ اتكن $u_n = 0$ متتالية عددية معرفة ب $u_n = 0$ و من أجل كل عدد طبيعي $u_n = 0$

 $u_n > 3$: فان عدد طبیعی n فان أجل كل عدد طبیعی أنه من أجل (1

 (u_n) متاقصة تماما ثم استتج أن المتتالية (u_n) متقاربة . عين نهاية المتتالية (u_n) متاقصة تماما ثم

 $v_n = u_n - 3$: نعتبر المتتالية العددية (v_n) المعرفة بـ (2

 $rac{1}{2}$ بين أن المتتالية $\left(v_{n}
ight)$ هندسية أساسها

 $\cdot n$ بدلالة v_n أحسب عبارة الحد العام

 $u_n = \left(\frac{1}{2}\right)^n + 3$ ، $u_n = \left(\frac{1}{2}\right)^n + 3$ استنتج أنه من أجل كل عدد طبيعي $u_n = \left(\frac{1}{2}\right)^n + 3$

 $S_n = \sum_{k=0}^{n} u_k = u_0 + u_1 + \dots + u_n$, n such that $u_k = u_0 + u_1 + \dots + u_n$ (2)

$$S_n = 3n + 5 - \left(\frac{1}{2}\right)^n$$
 بين أن

 $P(x) = -x^3 + 2x^2 + x - 2$: حيث x حيث الحدود للمتغير الحقيقي P(x)

 $P(x) = (x-1)(ax^2 + bx + c)$: أحسب P(1) ثم عين الأعداد الحقيقية a و b بحيث يكون b

P(x) = 0 المعادلة \mathbb{R} المجموعة (2

3) استنتج حلول المعادلتين:

$$(E')$$
: $-3^{3x} + 2 \times 3^{2x} = 2 - 3^x$ (E) : $-(\ln(x))^3 + 2(\ln(x))^2 + \ln(x) - 2 = 0$

🖽 التمرين

🖘 في حالة بعض الأمراض، يقوم الأطباء البيطريين بحساب جرعة الدواء من الأدوية وفقا لمساحة سطح جسم الحيوان في الجدول التالي يعطى مساحة سطح الجسم بالمتر مربع وفقا للوزن بالكلغ.

					•	•
kg x_i	4	8	12	20	24	28
$egin{array}{c} y_i \ \\ m^2 \end{array}$ الحيوان	0.25	0.40	0.64	0.47	0.84	0.93

مثل سحابة النقط $M_i(x_i;y_i)$ لهذه السلسلة في معلم متعامد . (على محور الفواصل 2cm لكل و على 1kg $(1m^2)$ محور التراتيب 10cm لكل

- . عين إحداثيي النقطة المتوسطة G لسحابة النقط . ومثلها في المعلم السابق (2
 - لتكن y=ax+b معادلة (d) مستقيم الانحدار بالمربعات الدنيا
- (10 $^{-3}$ النتائج بالتقريب الى (d) و مثله في المعلم السابق . . وتعطى النتائج بالتقريب الى (d)
 - ب) باستعمال التعديل الخطي السابق عين مساحة سطح جسم الحيوان الذي وزنه 32kg.

ﷺ التمرين

 $g(x)=x^3+x-2$: بقراءة بيانية أجب على ما يلى: g معرفة على المجموعة \mathbb{R} بالتمثيل البياني لدالة عددية g معرفة على المجموعة بيانية أجب على ما يلى:

(Cg)

- g(x) = 0 عين حلول المعادلة (1
- g(x) < 0 عين حلول المتراجحة (2
- $x \in \mathbb{R}$ شكل جدول اشارة g(x) من أجل (3
- نعتبر الدالة العددية f المعرفة على المجموعة .II $f(x)=x-\frac{1}{x}+\frac{1}{x^2}:\mathbb{R}^*$ وليكن $(\mathbf{C}_{\!f})$ تمثيلها البياني في المستوي

 $\left(\overrightarrow{O, \overrightarrow{i}, \overrightarrow{j}}
ight)$ المنسوب الى المعلم المتعامد و المتجانس

- 1) أحسب النهايات عند حدود مجموعة التعريف.
- $.f'(x)=rac{g\left(x
 ight)}{x^{3}}:$ فان $x\in\left]-\infty;0\right[\bigcup\left]0;+\infty\right[$ بين أنه من أجل (2)
 - . استنتج اتجاه تغیر الدالهٔ f و شکل جدول تغیراتها (3
- $+\infty$ عند (C_f) عند (C_f) عند y=x مقارب مائل للمنحني y=x عند (Δ) عند (Δ) عند (Δ) بين أن المستقيم (Δ) بالنسبة الى (Δ) .
 - -1.4 < lpha < -1.3 جيث أن المعادلة f(x) = 0 تقبل حلا وحيدا lpha
 - -1غند النقطة ذات الفاصلة ($oldsymbol{C}_{\!f}$) عند النقطة ذات الفاصلة (5
 - $(\boldsymbol{C}_{\!f})$ و (Δ) و (Δ) و (6
 - $H\left(x
 ight)=\ln\left(x
 ight)+rac{1}{x}$: ب $\left[0;+\infty
 ight[$ با المعرفة على المجال H المعرفة على المجال (7
 - .] $0;+\infty[$ على المجال على المجال h على المجال أ) بين أن الدالة H هي دالة أصلية للدالة h حيث h حيث أن الدالة H
- : المستقيمين (Δ) المستقيم المحدد بالمنحني (\mathbf{C}_f) المستقيم المحدد المستقيمين \mathbf{A} المستقيمين x=e,x=1

🖽 التمرين

🖘 في كل حالة من الحالات التالية توجد ثلاث اقتراحات من بينها واحد فقط صحيح ، حدّد الاقتراح الصحيح في كل حالة مع التبرير.

: هي
$$\mathbb{R}$$
 مجموعة حلول المعادلة $e^x+e^{-x}-2=0$

: هي
$$\mathbb{R}$$
 $e^x+e^{-x}-2=0$ هي (1 مجموعة حلول المعادلة $S=\{0\}$ (ج $S=\{-1,2\}$ (ب $S=\{1,-2\}$ (أ

 $e^{-2012x} + 1433 < 0$ مجموعة حلول المتراجحة (2

$$S=]-\infty,0]$$
 (E $S=\phi$ (... $S=[0;+\infty[$

$$\mathbb{R}$$
 h الدالة الأصلية H للدالة $h(x)=rac{e^x}{e^x+1}$: \mathbb{R} h لتكن (3

: معرفة كما يلي x=0 من أجل القيمة

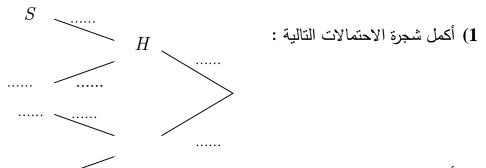
$$H\left(x\right)=\ln\left(2e^{x}+2\right)\text{ (c} \qquad H\left(x\right)=\ln\left(\frac{e^{x}-1}{2}\right)\text{ (c} \qquad H\left(x\right)=\ln\left(\frac{e^{x}+1}{2}\right)\text{ (for each of the each$$

🖽 التمرين

الجدول التالي يعطي متوسط طول القامة x_i بالسنتيمتر ومتوسط الوزن بالكيلوغرام لأطفال تتراوح أعمارهم بين سنة و \mathfrak{g} سنوات .

العمر بالسنوات	1	2	3	4	5	6
(cm) متوسط طول القامة x_i	72.5	84.5	92.8	99.7	106.4	112.4
kg متوسط الوزن y_i	9.2	11.6	13.6	15.3	17.2	19

- مثل سحابة النقط $M_i\left(x_i;y_i\right)$ لكل $M_i\left(x_i;y_i\right)$ و على مثل سحابة النقط و على معلم متل سحابة النقط و على المناسلة في معلم متعامد و على المناسلة في معلم متعامد و على المناسلة في معلم متعامد و على المناسلة و على المناسلة في معلم متعامد و على المناسلة في معلم متعامد و على المناسلة و على المناسلة في معلم متعامد و على المناسلة و على المناسلة و على المناسلة و ا محور التراتيب 1cm لكل 1kg ويبدأ التدريج على هذا المحور ابتداء من
 - . عين إحداثيي النقطة المتوسطة G لسحابة النقط. ومثلها في المعلم السابق (2
 - لتكن y = ax + b مستقيم الاتحدار بالمربعات الدنيا (3
 - (10^{-2} النتائج بالتقريب الي (d) و مثله في المعلم السابق). . تعطى النتائج بالتقريب الي
 - .130cm عين الوزن المتوسط لطفل عمره 9 سنوات ومتوسط طول قامته السابق عين الوزن المتوسط لطفل عمره 9


🖽 التمرين :

🖘 الجدول التالي يعطي توزيع 100 منخرط في احدى النوادي السياحية .

	رجال	نساء
يمارس رياضة	48	12
لا يمارس رياضة	16	24

H لتكن

" المنخرط يمارس رياضة ". نختار عشوائيا منخرطا . S

- 2) أحسب احتمال الحوادث التالية:
 - أ) السائح المختار رجل .
- ب) السائح المختار امرأة تمارس رياضة .
 - ج) سائح لا يمارس أية رياضة .
- د) السائح المختار يمارس رياضة علما أنه رجل .

🖽 التمرين :

- $g(x)=x^2-1+\ln{(x)}$: بعتبر الدالة العددية g المعرفة على المجال .I
 - $\lim_{x\to +\infty} g(x)$ و $\lim_{x\to +\infty} g(x)$ أحسب (1
 - . أحسب عبارة الدالة المشتقة الأولى g'(x) و أدرس اشارتها (2
 - . استنتج اتجاه تغير الدالة g وشكل جدول تغيراتها (3
 - $[0;+\infty]$ أحسب g(x) على المجال g(x) ثم استنتج إشارة (4
- ال. الدالة العددية المعرفة على المجال $0;+\infty$ بما يلي $f(x)=x-1-rac{\ln{(x)}}{x}$ وليكن $f(x)=x-1-rac{\ln{(x)}}{x}$. $f(x)=x-1-rac{\ln{(x)}}{x}$ وليكن $f(x)=x-1-rac{\ln{(x)}}{x}$. $f(x)=x-1-rac{\ln{(x)}}{x}$ وليكن والمثيلها البياني في المستوي المنسوب الى المعلم المتعامد و المتجانس $f(x)=x-1-rac{\ln{(x)}}{x}$
 - $\lim_{x \to +\infty} f(x)$ و $\lim_{x \to +\infty} f(x)$ أحسب (1
 - $f'(x)=rac{g\left(x
 ight) }{x^{2}}$ ، $\left] 0;+\infty
 ight[$ ا بين أنه من أجل كل عدد حقيقي x من المجال (2
 - f'(x) عين إشارة f'(x) و شكل جدول تغيرات الدالة
 - 4) بين أن المستقيم (d)ذي المعادلة y=x-1 مقارب مائل للمنحني $(\mathbf{C}_{\!f})$ عند $(\mathbf{C}_{\!f})$ عند (d) بين أن المستقيم (d) بين أن المستقيم (d) بالنسبة الى المستقيم (d) بالنسبة الى المستقيم (d)
 - $\left(\mathbf{C}_{\!f}\right)$ و $\left(d\right)$ شم أرسم $\left(f\left(3\right)\right)$ في المحسب (5)
 - . $H\left(x
 ight)=rac{1}{2}ig(\ln\left(x
 ight)ig)^{2}$: ب $]0;+\infty[$ بعتبر الدالة العددية H المعرفة على المجال (6
 - . $]0;+\infty[$ على المجال $h(x)=\frac{\ln{(x)}}{x}$: حيث h على المجال H على المجال (أ
 - : المستقيمين (d) المستقيمين (d) و المستقيمين (d) و المستقيمين (d) و المستقيمين (d) (