5

المدة: 02 (ساعتان)

التمرين الأول:

ملاحظة: السؤال 3) مستقل عن السؤالين 1) و2).

الدالة
$$f$$
 معرفة على $f(x) = \frac{ax+b}{x-2}$ بـ: $-\infty; 2[\cup]2; +\infty[$ ومتجانس.

- bو a عبارة الدالة المشتقة بدلالة العددين f'(x) وط.
- . A(1;1) عين قيمتى العددين a و b إذا علمت أنّ المنحنى a يقبل مماسا معادلته y=-2x+3 عين قيمتى العددين a
 - b=-4 و a=3 فيما يلي نضع (3
 - أ) أحسب نهايات الدالة f عند أطراف مجموعة التعريف، وفسر النتائج بيانيا.
 - ب) أدرس اتجاه تغير الدالة fوشكّل جدول تغيراتها.
- $y = -\frac{1}{2}x + 1$: عيّن إحداثيات النقط من (C) التي يكون فيها المماس (T) عمو ديا على المستقيم ذي المعادلة:
 - د) عيّن إحداثيات نقط تقاطع المنحنى (C) مع محوري المعلم. ثمّ أرسم (C).

$$g(x) = \frac{3x-4}{|x-2|}$$
 :اشرح باستعمال (C_g) کیف یمکن انشاء (C_g) الممثل للدالة و حیث:

التمرين الثاني:

. AB = 10 مثلث في المستوي حيث ABI

- النقطة J صورة J بالتحاكي h_A الذي مركزه A ونسبته 2
- النقطة K صورة J بالتحاكي h_B الذي مركزه B ونسبته S
- Kو J عبّر عن كل تحاك بعلاقة شعاعية، ثم أنشئ النقطتين J
- . $\{(J;3);(B;-2)\}$ مرجّح الجملة المثقلة $\{(A;1);(I;-2)\}$ ، وأنّ X مرجّح الجملة المثقلة (2 (2) . (2) . (2)
 - $\{(A;3);(B;2);(K;1)\}$ و $\overrightarrow{BK}=3\overrightarrow{BJ}$ و استنتج أنّ I مرجّح الجملة المثقلة $\overrightarrow{AI}=\overrightarrow{IJ}$ و رعلم أنّ $\overrightarrow{AI}=\overrightarrow{IJ}$
 - 4) استنتج وجود نقطة وحيدة C من القطعة المستقيمة [AB] حيث $\overrightarrow{CK}=6$ ، وأكمل الفر غات في العبارة التالية: C هو مركز تحاك يحوّل إلى ونسبته

التمرين الثالث:

.] $-\pi$; π] عدد حقيقي من المجال x

$$E(x) = \sin\left(\pi + x\right) - \cos\left(\frac{13\pi}{2} + x\right) - \sin\left(5\pi - x\right)$$
 بسط العبارة (1

 $\cos x \le \frac{\sqrt{2}}{2}$: (3) استنتج حلول المتراجحة

بالتوفيق

انتهى

التمرين الأول: (09 نقاط)

ملاحظة: السؤال 3) مستقل عن السؤالين 1) و2).

. الدالة f معرفة على $[0, +\infty]$ معرفة على $[0, +\infty]$ بـ: $[-\infty; 2]$ بـ: $[-\infty; 2]$ الدالة $[0, +\infty]$ الدالة $[0, +\infty]$

a عبارة الدالة المشتقة بدلالة العددين f'(x) و الحدين a

$$f'(x) = \frac{-2a - b}{(x - 2)^2}$$
 الحلن:

. A(1;1) عين قيمتي العددين a و b إذا علمت أنّ المنحنى a يقبل مماسا معادلته y=-2x+3 عين قيمتي العددين a

$$\begin{cases} -2a - b = -2(1-2)^2 \\ a(1) + b = 1(1-2) \end{cases}$$
يكافئ:
$$\begin{cases} f'(1) = -2 \\ f(1) = 1 \end{cases}$$
 من المعطيات نشكل الجملة التالية

$$\begin{cases} a = 3 \\ b = -4 \end{cases}$$
 ومنه: $\begin{cases} -2a - b = -2 \\ a + b = -1 \end{cases}$

b=-4 و a=3 فيما بلى نضع (3

أ) أحسب نهايات الدالة f عند أطراف مجموعة التعريف، وفسّر النتائج بيانيا.

$$\lim_{x \to +\infty} \frac{3x - 4}{x - 2} = \lim_{x \to +\infty} \frac{x\left(3 - \frac{4}{x}\right)}{x\left(1 - \frac{2}{x}\right)} = \lim_{x \to +\infty} \frac{x\left(3 - \frac{4}{x}\right)}{x\left(1 - \frac{2}{x}\right)} = \lim_{x \to +\infty} \frac{\left(3 - \frac{4}{x}\right)}{\left(1 - \frac{2}{x}\right)} = \frac{3 + 0}{1 - 0} = 3$$

$$\lim_{x \to -\infty} \frac{3x - 4}{x - 2} = \lim_{x \to -\infty} \frac{x\left(3 - \frac{4}{x}\right)}{x\left(1 - \frac{2}{x}\right)} = \lim_{x \to -\infty} \frac{x\left(3 - \frac{4}{x}\right)}{x\left(1 - \frac{2}{x}\right)} = \lim_{x \to -\infty} \frac{\left(3 - \frac{4}{x}\right)}{\left(1 - \frac{2}{x}\right)} = \frac{3 + 0}{1 - 0} = 3$$

y=3 التفسير: المنحنى (C) يقبل مستقيما مقاربا موازيا لمحور الفواصل معادلته

$$\lim_{x \to 2} \frac{3x - 4}{x - 2} = \frac{2}{0^{+}} = +\infty \quad \text{o} \qquad \lim_{x \to 2} \frac{3x - 4}{x - 2} = \frac{2}{0^{-}} = -\infty$$

x=2 التفسير: المنحنى (C) يقبل مقاربا موازيا لمحور التراتيب معادلته

 \cdots ب) أدرس اتجاه تغير الدالة f وشكّل جدول تغير اتها.

x	$-\infty$ 2	2 +∞
f'(x)	_	+
f(x)	3 _ $-\infty$	$+\infty$

$$f'(x) = \frac{-2}{(x-2)^2}$$
: عبارة الدالة المشتقة عبارة الدالة المشتقة

ومنه من أجل $x \neq 2$ فإنّ f'(x) < 0 والدالة f متناقصة على كل مجال من مجموعة تعريفها.

جدول التغيرات: أنظر الجدول.

$$y = -\frac{1}{2}x + 1$$
 :عيّن إحداثيات النقط من (C) التي يكون فيها المماس (T) عمو ديا على المستقيم ذي المعادلة:

حل:

$$\frac{-2}{(x-2)^2} \times \left(-\frac{1}{2}\right) = -1$$
 نحل المعادلة:
$$f'(x) \times \left(-\frac{1}{2}\right) = -1$$

ويكافئ: $(x-2)^2=-1$ (مستحيلة)، إذن لا توجد أية نقطة من المنحنى (C) يكون فيها المماس عموديا على المستقيم المعرّف أعلاه.

د) عين إحداثيات نقط تقاطع المنحنى (C) مع محوري المعلم. ثمّ أرسم (C).

<u>حل:</u>

$$(C) \cap (xOx') = \left\{ \left(\frac{4}{3}; 0\right) \right\}$$

$$(C) \cap (y'Oy) = \{(0;-2)\}$$

رسم المنحنى: انظر الشكل.

g الممثل للدالة (C_g) الممثل للدالة عند يمكن إنشاء (C_g) الممثل للدالة عند المدالة والمدالة g

$$g(x) = \frac{3x-4}{|x-2|}$$

g(x) نكتب g(x) دون رمز القيمة المطلقة على مجالين مختلفين:

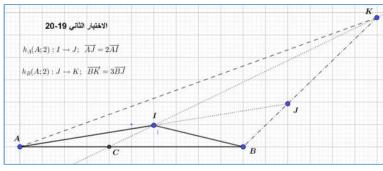
$$g(x) = \begin{cases} f(x) & :]2; +\infty[\\ -f(x) & :]-\infty; 2[\end{cases}$$

.] $-\infty$; 2[على (C) على المجال (C_g) و (C_g) يناظر (C_g) بالنسبة لمحور الفواصل على (C_g) على المجال

التمرين الثاني: (07 نقاط)

لا النقطة A ونسبته A ونسبته A النقطة A صورة A بالتحاكي A الذي مركزه A ونسبته A النقطة A النقطة A النقطة A النقطة A ونسبته ونسبته A ونسبته A ونسبته و نسبته و نسبته و نسبته و نسبته

 K_{0} عبر عن كل تحاك بعلاقة شعاعية، ثم أنشئ النقطتين J_{0}



- بيّن أنّ J مرجّح الجملة المثقلة $\{(A;1);(I;-2)\}$ ، وأنّ X مرجّح الجملة المثقلة $\{(J;3);(B;-2)\}$

<u>حل:</u>

$$lpha+eta=1$$
 و $eta=2$ حیث: $AJ=2\overline{AI}$ $AJ=2\overline{AI}$ و منه: $AJ=2\overline{AI}$

$$\{(A;3);(B;2);(K;1)\}$$
 و $\overrightarrow{BK}=3\overrightarrow{BJ}$ ، استنتج أنّ I مرجّح الجملة المثقلة $\overrightarrow{AI}=\overrightarrow{IJ}$ و علم أنّ $\overrightarrow{AI}=\overrightarrow{IJ}$

$$I$$
 نفرض أن النقطة G هي مرجّح $\{(A;3);(B;2);(K;1)\}$ ، ونثبت أنها منطبقة على $\{(B;2);(K;1)\}$ لدينا I مرجح

وينتج: G هي مرجّح $\{(A;3);(J;3)\}$ ، ومنه G منتصف G منطبقة على النقطة G. طريقة G:

$$-2\overrightarrow{BI}+\overrightarrow{IK}-3\overrightarrow{IJ}=\overrightarrow{0}$$
 ویکافئ: $(\overrightarrow{BI}+\overrightarrow{IK})-3(\overrightarrow{BI}+\overrightarrow{IJ})=\overrightarrow{0}$ یکافئ: $\overrightarrow{BK}=3\overrightarrow{BJ}$ وهو ولدینا: $\overrightarrow{AI}=\overrightarrow{IK}-3\overrightarrow{AI}=\overrightarrow{0}$ فینتج: $\overrightarrow{AI}=\overrightarrow{IK}-3\overrightarrow{AI}=\overrightarrow{0}$ وهو المطلوب.

4) استنتج وجود نقطة وحيدة C من القطعة المستقيمة $\overline{CK}=6\overline{CI}$ حيث $\overline{CK}=6\overline{CI}$ ، وأكمل الفر غات في العبارة التالية: C هو مركز تحاك يحوّل إلى ونسبته

حل: ________

و وحيدة. $\overrightarrow{CK}=6\overrightarrow{CI}=0$ تكافئ: $\overrightarrow{CK}=6\overrightarrow{CI}=0$ و $\overrightarrow{CK}=6\overrightarrow{CI}=0$ ومنه $\overrightarrow{CK}=6\overrightarrow{CI}$ الانتماء إلى [AB]:

وبفرض E مرجّح $\{(A;3);(B;2)\}$ ، (أي E تنتمي إلى القطعة E الانّ المعاملين 2 و 3 موجبين) وبفرض E ولدينا E مرجّح ولدينا E مرجّح ولدينا E مرجّح E

فينتج: I هي مرجّح $\{(E;5); (K;1)\}$ ، ومنه $\overline{EI} = \frac{1}{6}$ أي: $\overline{EI} = \frac{1}{6}$ أي:

النقطة C هي مركز تحاك يحوّل I إلى K ونسبته δ .

التمرين الثالث: (04) نقاط)

.] $-\pi$; π] عدد حقيقي من المجال x

$$E(x) = \sin(\pi + x) - \cos\left(\frac{13\pi}{2} + x\right) - \sin(5\pi - x)$$
 بسط العبارة (1

<u>حل:</u>

$$E(x) = \sin(\pi + x) - \cos\left(\frac{13\pi}{2} + x\right) - \sin(5\pi - x)$$

$$E(x) = -\sin(x) - \cos\left(6\pi + \frac{\pi}{2} + x\right) - \sin(4\pi + \pi - x)$$

$$E(x) = -\sin(x) - \cos\left(\frac{\pi}{2} + x\right) - \sin(\pi - x)$$

$$E(x) = -\sin(x) + \sin(x) - \sin(x)$$

$$E(x) = -\sin(x)$$

 $\sqrt{2}\cos x = 1$ ، $\sin x = 0$ على المعادلتين: (2

<u>حل:</u>

 $x\in\mathbb{Z}$ و $x=\pi+2k\pi$ أ $x=\sin 0$ تكافئ: $\sin x=\sin 0$ تكافئ: $\sin x=0$ أ x=0 أ و من أجل $x\in\{0;\pi\}$ نجد: $x\in\{0;\pi\}$ نجد

$$\cos x = \cos \frac{\pi}{4}$$
 ب) $\cos x = \frac{\sqrt{2}}{2}$ وتكافئ: $\cos x = \frac{1}{\sqrt{2}}$ وتكافئ: $\cos x = 1$

$$k\in\mathbb{Z}$$
 و تكافئ: $x=rac{\pi}{4}+2k\pi$ أو $x=rac{\pi}{4}+2k\pi$ و تكافئ

$$x \in \left\{-\frac{\pi}{4}; \frac{\pi}{4}\right\}$$
 ومن أجل $\left[-\pi; \pi\right]$ نجد

$$\cos x \le \frac{\sqrt{2}}{2}$$
: استنتج حلول المتراجحة

<u>حل:</u>

$$x \in \left] -\pi; -\frac{\pi}{4} \right] \cup \left[\frac{\pi}{4}; \pi \right]$$

نتهى بالتوفيق

نص الاختبار فيما يلي