مذكرة مرقع:8

تحضير مذكرة تعليمية

اعداد الاستاذ يوسفي عبد الرحمن

السنة الدراسية 2014/2013

الزوايا الموجهة

المحورالسابع

المستوى: الثانية رياضيات

angles Orietes الزوايا الموجمة

الكفاءة المستهدفة

- ◄ استعمال خواص الزوايا الموجهة لإثبات تقايس الزوايا.
 - 🕶 تعيين أقياس زاوية موجهة لشعاعين.
- ♥ توظيف دساتير التحويل المتعلقة بجيب التمام و بالجيب في حل مسائل مثلثية.
 - 🔻 حل معادلات و متراجحات مثلثية .

المكتسبات القبلية

- الدائرة المثلثبة
- العلاقات المثلثية

التوقيت	مخطط الدرس
	نشاط :
	1: الزوايا الموجهة
	2:خواص الزوايا الموجهة
	3: حساب المثلثات
	4: المعادلات المثلثية
	5: جيب تمام وجيب الزويا المرفقة
	6:الاحداثيات القطبية
	7: حل معادلات ومتراجحات مثلثية

نقد ذاتي	الوسائل البيداغوجية	وثائق التحضير
	السبورةجهاز داتاشو	 دليل الأستاذ الكتاب المدرسي المنهاج الهباج في الرياضيات الجديد في الرياضيات

الاستاذ الإستاذ الزوايا الموجهة وحساب المثلثات يوسفي عبد الرحمن يوسفي عبد الرحمن

المؤسسية: الثانية رباضيات السنة الدراسية: هندسة

<u>التاري</u>خ: الزوايا الموجهة وحساب المثلثات موضوع الحصة: الزوايا الموجهة وحساب المثلثات موضوع الحصة: الزوايا الموجهة

المُكرِّسها من المرابعة استعمال خواص الزوايا الموجهة لإثبات تقايس الزوايا..

<u>نشا**ط1**:</u> B ABCD مربع.

[AD,AB]

1/ما هو قيس كل زاوية مما

رُّرُ نَفُسَ السَّوَّالَ مَعَ الزَّوَالِيَّا السَّوَّالَ مَعَ الزَّوَالِيَّا المُوجِهَةِ التَّالِيَّةِ: $(\overline{AC}, \overline{AB})$.

 $(\overline{DC}, \overline{DA}) \cdot (\overline{AB}, \overline{AC})$

ى شعاعان غير معومين $ec{u}$ ، $ec{v}$

مثل کل زاویة مما یلی ثم انکر

 $(-\vec{v}, \vec{u}) \cdot (\vec{v} - \vec{u}) \cdot (\vec{v}, \vec{u})$

 $(2\vec{v},3\vec{u})\cdot(-\vec{v},-\vec{u})$

في المستوي: (أنظر الشك<u>ل</u>).

حيث: α = (v, ū) . ``

قيسا لها بدلالة α:

 $.(2\vec{v},-3\vec{u})$

ىلى: [AB,AC]،[AC,AB]،

الأبطة المعترمة وطبيعتما الإنجاز (سير الحدة) الإنجاز والتوجيمات

A من الكتاب A من الكتاب

قيس زاوية بالدرجة متناسب مع قيسها بالراديان.

باستعمال جدول التناسبية . أنقل و أكمل الجدول الآتي:

				•				•		•
					120	105	36	22.5	15	القيس بالدرجة
$\frac{9\pi}{24}$	$\frac{7\pi}{12}$	$\frac{7\pi}{24}$	$\frac{5\pi}{12}$	$\frac{3\pi}{8}$						القيس بالدادان

نشاط ثان

O الدائرة الموجهة التي مركزها C

و نصف قطرها 1 الاتجاه الموجب المعاكس لاتجاه دوران

. IOA هو قيس بالراديان للزاوية x . هو قيس

بعبارة أخرى A هي صورة x على الدائرة المثلثية.

- A ماذا تمثل النقطة B بالنسبة للنقطة A
- $^\circ$ $^\circ$ $^\circ$ ماذا تمثل النقطة $^\circ$ بالنسبة للنقطة $^\circ$
- A النقطة E بالنسبة للنقطة A
- E ماذا تمثل النقطة F بالنسبة للنقطة (5
- E النقطة G بالنسبة للنقطة G بالنسبة للنقطة (6
- $^\circ$ النقطة $^\circ$ بالنسبة للنقطة $^\circ$ بالنسبة النقطة $^\circ$
 - 8) أنقل و أكمل الجدول الآتى:

$x-\frac{\pi}{2}$	$\frac{\pi}{2}-x$	$\pi + x$	$\frac{3\pi}{2}$ – x	-x	$\frac{\pi}{2} + x$	$\pi - x$	قيس الزاوية
							النقطة
							المرفقة

 $\pi - \frac{5}{2}x$ صورة M صورة المثلثية النقطة (9)

● نتطرق في هذه
الفقرة إلى الزاوية
الموجهة لشعاعين
غير معدومين وإلى
خواصها دون أي
توسع نظري. ثمّ
نتطرق إلى أقياس
زاوية موجهة، خاص
القيس الرئيسي
الذي يكون محصور
ضمن المجال
$.\left]\!-\!\pi;\pi\right]$

• الوحدة التي

نبرهن نظريةالزاوية المحيطية.

- نستعملها لقياس الزوايا هي الراديان. ونلفت انتباه التلاميذ إلى قبول التعبير المجازي الذي نعبر به على الزاوية وقيسها في نفس الوقت كقولنا الزاوية ... تساوي
- توظف العلاقات المدروسة في السنة الأولى الخاصة بالعدد X والأعداد الحقيقية المرفقة له وهي:

 $\pi - x$ ، $\pi + x$ ، -xثمّ نمددها إلى الأعداد . $\frac{\pi}{2} + x$ و $\frac{\pi}{2} - x$:

yousfisifou804@yahoo.fr مذکرات یوسفي 2

یجب التركیز على
 الفرق بین القیس
 الرئیسي والهندسي

النشاط الأول:

- الهدف: تحويل الدرجات الى راديان و العكس
- $142,5:10,5:52,5:75:67,5:\frac{2\pi}{3}:\frac{7\pi}{12}:\frac{\pi}{5}:\frac{\pi}{8}:\frac{\pi}{12}:$ النتائج هي

النشاط الثاني:

- تعيين صور أعداد حقيقية على الدائرة المثلثية
 - C (1 نظيرة A بالنسبة للنقطة O
 - 2) B نظيرة A بالنسبة للمستقيم (OJ)
 - OI) نظيرة A بالنسبة للمستقيم (OI
 - 4) E نظيرة A بالنسبة للمنصف الاول
 - 5) F نظيرة E بالنسبة للمستقيم (OJ)
 - 6) G نظيرة E بالنسبة للنقطة G
 - (OI) نظيرة E بالنسبة للمستقيم H
- 8) النقط المرفقة هي على الترتيب: H; E; C; G; D; F; B
 - \widehat{FOJ} هي نقطة تقاطع (C) مع منصف الزاوية M (9

<u>1/ مفاهيم عامة:</u>

- * الدائرة الموجهة: هي دائرة قد اختير طيها اتجاه موجب للحركة (علاة عكس انجه عفلاب الساعة).
 - المستوي الموجه: هو المستوي الذي وجهت كل دوائر ه.
- * الدائرة المثلثية: هي دائرة موجهة نصف قطر ها 1، و الدائرة المثلثية المرفقة بمعلم هي . دائرة مثلثية مركز ها مبدأ المعلم المتعامد و المتجانس.

- نبرهن نظرية الزاوية المحيطية.
- نتطرق في هذه الفقرة إلى الزاوية الموجهة لشعاعين غير معدومين وإلى خواصها دون أي توسع نظري. ثمّ نتطرق إلى أقياس زاوية موجهة، خاصة القيس الرئيسي ضمن المجال ضمن المجال π
- الوحدة التي نستعملها لقياس الزوايا هي الراديان. ونلفت انتباه التلاميذ إلى قبول التعبير المجازي الذي نعبر به على الزاوية وقيسها في نفس الوقت كقولنا الزاوية ... تساوي
- توظف العلاقات المدروسة في السنة الأولى الخاصة بالعدد X والأعداد الحقيقية المرفقة له وهي :
- $\pi x \cdot \pi + x \cdot -x$
- ثمّ نمددها إلى الأعداد
 - $\frac{\pi}{2} + x = \frac{\pi}{2} x :$

• نبرهن نظرية الزاوبة المحيطية. ● نتطرق في هذه الفقرة إلى الزاوبة

الموجهة لشعاعين

غير معدومين وإلى

خواصها دون أي

توسع نظري. ثمّ نتطرق إلى أقياس

زاوية موجهة، خاصة القيس الرئيسي

الذى يكون محصورا

ضمن المجال $.] -\pi;\pi]$ • الوحدة التي

ت1) رفم 4 ص 125.

- الاتجاه المباشر مستو هو الاتجاه المختار و الاتجاه الغير مباشر هو عكس الاتجاه المختار.
 - اصطلاحا نختار الاتجاه المباشر الاتجاه المعاكس لدوران عقارب الساعة.
- في المستوي الموجه نسمى دائرة مثلثيه كل دائرة موجهة في الاتجاه المباشر و التي نصف قطرها 1 ملاحظة في كل مما يأتي نعتبر المستوي الموجه توجيه مباشر.

2.1 الزوايا الموجمة لشعاعين غير معدومين

تعريف2:

ليكن \vec{u} و \vec{v} شعاعين غير معدمين . الثنائية \vec{u} تسمى زاوية موجهة لشعاعين.

3.1 ويس راوية موجمة

لیکن $\stackrel{\longleftarrow}{u}$ و $\stackrel{\longleftarrow}{v}$ شعاعین غیر معدومین ولتکن $\stackrel{\longleftarrow}{v}$ دائرة مثلثیة

 $\overrightarrow{ON} = \overset{
ightarrow}{v}$ مركزها O لتكن M و N النقطتين من المستوي حيث مركزها المستقيم (OM)يقطع (C)في (C) والمستقيم (ON)يقطع (C)في (C) ، قيس بالرادين للزاوية الموجهة $(\overrightarrow{OM}, \overrightarrow{ON})$ هو كذالك قيس بالرادين للزاوية الموجهة $(\overrightarrow{u}, \overrightarrow{v})$

ملاحظة ليكن \vec{u} و \vec{v} شعاعين غير معدومين . إذا كان lpha قيسا للزاوية الموجهة (\vec{u},\vec{v}) فإن كل $k\in\mathbb{Z}$ هي أقياس للزاوية $(\stackrel{\rightarrow}{u},\stackrel{\rightarrow}{v})$.مع lpha+2k

3.1 : قيس زاوية موجمة

يسمى القيس $\left[-\pi,\pi \right]$ من بين أقياس الزاوية الموجهة (\vec{u},\vec{v}) يوجد قيس وحيد على المجال المجال الموجهة والمحتمد القيس (\vec{u}, \vec{v}) الرئيسي للزاوية الموجهة

 $\frac{\pi}{\Delta} \in \left] - \pi; \pi\right]$ و $\frac{9\pi}{\Delta} = \frac{\pi + 8\pi}{\Delta} = \frac{\pi}{\Delta} + 2\pi$ لأن: $\pi/4$ هو $\pi/4$ هو $\pi/4$ هو $\pi/4$ هو $\pi/4$ هو المرابعي المقيس الرئيسي المقيس المرابعي المقيد المرابعي المقيد المرابعي المقيد المرابعي المقيد المرابعي المرابعي

- . 0 هو $(\overset{
 ightarrow}{u},\overset{
 ightarrow}{u})$ القيس الرئيسي للزاوية المعدومة
- . π هو $(ec{u}\,,-ec{u})$ القيس الرئيسي للزاوية المستقيمة
 - . $rac{\pi}{2}$ القيس الرئيسي للزاوية القائمة المباشرة هو
- 4) القيس الرئيسي للزاوية القائمة غير المباشرة هو $rac{\pi}{2}$.
- 5) إذا كان x القيس الرئيسي للزاوية الموجهة (\vec{u}, \vec{v}) فإن x هو قيس للزاوية الهندسية \vec{v} و \vec{u} المكونة من

: عدد حقیقی lpha قیس لزاویهٔ موجههٔ $(\stackrel{
ightarrow}{u},\stackrel{
ightarrow}{v})$ فإنه یوجد عدد صحیح وحید k حیث (\vec{u},\vec{v}) يكفي إيجاد k إنطلاقا من هذا الحصر لإيجاد القيس الرئيسي لزاوية موجهة $-\pi < \alpha + 2k\pi \le \pi$

- نستعملها لقياس الزوايا هي الراديان. ونلفت انتباه التلاميذ إلى قبول
- التعبير المجازى الذي نعبربه على الزاوية وقيسها في نفس
 - الوقت كقولنا
 - " الزاوية ... تساوي
- توظف العلاقات المدروسة في السنة الأولى الخاصة
- بالعدد x والأعداد الحقيقية المرفقة له
- $\pi x \cdot \pi + x \cdot -x$
- ثمّ نمددها إلى الأعداد
- $\frac{\pi}{2} + x$ $\frac{\pi}{2} x$:

yousfisifou804@yahoo.fr

• نبرهن نظرية

الزاوبة المحيطية.

نتطرق في هذهالفقرة إلى الزاوبة

الموجهة لشعاعين

غير معدومين وإلى

خواصها دون أي توسع نظري. ثمّ

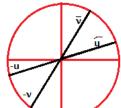
نتطرق إلى أقياس

زاوية موجهة، خاصة القيس الرئيسي

المنابعة عال

مبرهنة: (تقبل بدون برهان) من أجل كل ثلاثة أشعة غير معدومة \vec{v} ، \vec{u} و \vec{w} لدينا .

$$(\vec{u}, \vec{v}) + (\vec{v}, \vec{w}) = (\vec{u}, \vec{w})$$



نتائج علاقة شال: من أجل كل شعاعين غير معدومين \vec{u} و \vec{v} لدينا: $\bullet (\vec{u}, -\vec{v}) = (\vec{u}, \vec{v}) + \pi \quad \bullet (\vec{v}, \vec{u}) = -(\vec{u}, \vec{v})$ $(-\vec{u}, -\vec{v}) = (\vec{u}, \vec{v}) \quad \bullet \quad (-\vec{u}, \vec{v}) = (\vec{u}, \vec{v}) + \pi$

(C) الدائرة المثلثية مرفقة بالمعلم المتعامد و المتجانس الدائرة المثلثية مرفقة بالمعلم المتعامد و المتجانس الدائرة المثلثية مرفقة بالمعلم المتعامد و المتجانس المتعامد و المتحانس المتعامد و المتعامد و المتحانس المتعامد و المتحانس المتعامد و المتحانس المتعامد و المتعامد و المتعامد و المتعامد و المتعامد و المتعامد و المتحانس المتعامد و الم

$$(\overrightarrow{OI}, \overrightarrow{OB}) = \frac{3\pi}{4}$$
 و $(\overrightarrow{OI}, \overrightarrow{OA}) = \frac{\pi}{6}$ حيث (C) حيث (C) من الدائرة (C) من الدائرة (C) حيث (C) (C)

 $.\left(\overrightarrow{OA},\overrightarrow{OB}
ight)$ (3 . $\left(\overrightarrow{OJ},\overrightarrow{OB}
ight)$ (2 . $\left(\overrightarrow{OJ},\overrightarrow{OA}
ight)$ (1 : عين قيسا للزوايا الموجهة

الحل:

$$(\overrightarrow{OJ}, \overrightarrow{OA}) = -(\overrightarrow{OA}, \overrightarrow{OJ}) = -\left[(\overrightarrow{OI}, \overrightarrow{OJ}) - (\overrightarrow{OI}, \overrightarrow{OA})\right] = -\frac{\pi}{2} + \frac{\pi}{6} = -\frac{\pi}{3} \quad (1)$$

$$(\overrightarrow{OJ}, \overrightarrow{OB}) = (\overrightarrow{OI}, \overrightarrow{OB}) - (\overrightarrow{OI}, \overrightarrow{OJ}) = \frac{3\pi}{4} - \frac{\pi}{2} = \frac{\pi}{4} \quad (2)$$

$$(\overrightarrow{OA}, \overrightarrow{OB}) = (\overrightarrow{OI}, \overrightarrow{OB}) - (\overrightarrow{OI}, \overrightarrow{OA}) = \frac{3\pi}{4} - \frac{\pi}{6} = \frac{7\pi}{12} \quad (3)$$

: lpha التي قيسها lpha في كل حالة من الحالات الآتية الطبيق: أوجد القيس الرئيسي للزاوية الموجهة $(ec{u}\,,ec{v}\,)$ التي قيسها

$$.\alpha = \frac{65\pi}{8}$$
 (3 $.\alpha = -\frac{189\pi}{4}$ (2 $.\alpha = 2007 rad$ (1

ومنه $-\pi < 2007 - \pi < 2k\pi \le \pi - 2007$ ومنه $-\pi < 2007 + 2k\pi \le \pi$ (1) ومنه $-\pi < 2007 + 2k\pi \le \pi$ (1) ومنه $-\pi < 2007 - \pi$ إذن $-\pi < 2007 - \pi$

$$2007 + (-319 \times 2 \times \pi) = 2,663$$
مو هو (\vec{u},\vec{v}) هو الرئيسي للزاوية القيس الرئيسي الزاوية

$$k = 24$$
 و منه $23,125 < k \le 24,125$ إذن $\frac{185}{8} < k \le \frac{193}{8}$

$$-\frac{189\pi}{4} + (24 \times 2 \times \pi) = -\frac{189\pi}{4} + \frac{192\pi}{4} = \frac{3\pi}{4}$$
 إذن القيس الرئيسي للزاوية (\vec{u}, \vec{v}) هو

$$-1 < \frac{65}{8} + 2k \le 1$$
 يالاختزال في π نحصل على $-\pi < -\frac{65\pi}{8} + 2k\pi \le \pi$ (3)

$$k=-4$$
 و بالتالي $-4,5625 < k \le -3,5625$ إذن $-\frac{73}{16} < k \le -\frac{57}{16}$

.
$$\frac{65\pi}{8} + (-4 \times 2 \times \pi) = \frac{65\pi}{8} - \frac{64\pi}{8} = \frac{\pi}{8}$$
 هو (\vec{u}, \vec{v}) هو إذن القيس الرئيسي للزاوية

- الذي يكون محصورا ضمن المجال $\left[-\pi;\pi
 ight]$
- الوحدة التي نستعملها لقياس الزوايا هي الراديان. ونلفت انتباه التعبير المجازي الذي نعبر به على الزاوية وقيسها في نفس الوقت كقولنا الزاوية ... تساوي " الزاوية ... تساوي " " " "
- توظف العلاقات المدروسة في السنة المدروسة وي السنة بالعدد x والأعداد الحقيقية المرفقة له وهي : $\pi x \cdot \pi + x \cdot x$ ثمّ نمددها إلى الأعداد $\frac{\pi}{2} + x = \frac{\pi}{2} x$

5.1 خواص الزوايا الموجمة

 (\vec{u}',\vec{v}') قيسا للزاوية (\vec{u},\vec{v}) قيسا للزاوية (\vec{u},\vec{v}) قيسا للزاوية (\vec{u}',\vec{v}) قيسا للزاوية (\vec{u}',\vec{v})

1.5.1 الزوايا الموجهة <mark>المقايسة.</mark>

 $\theta'=\theta+2k\pi$ عيث k حيث k حيث k حيث k عدد صحيح k عيث أذا و فقط إذا وجد عدد صحيح k حيث $\alpha'=\alpha+2k\pi$ عيث $\alpha'=\alpha+2k\pi$ عيث k عيث

<u>2.5.1 الزوايا الموجهة و الإرتباط الحطي</u>

ي و \vec{v} أن شعاعان غير معدومين من المستوي. يكون الشعاعان \vec{v} و \vec{v} مرتبطان خطيا إذا وفقط إذا $k\in\mathbb{Z}$. $=\pi+2k$ $\pi\left(\vec{u},\vec{v}\right)$ أو =2k $\pi\left(\vec{u},\vec{v}\right)$ كان:

◄ ملاحظة

. يكون للشعاعين $\stackrel{
ightarrow}{u}$ و $\stackrel{
ightarrow}{u}$ يكون للشعاعين $\stackrel{
ightarrow}{u}$ نفس الاتجاه

إذا كان $(\vec{u},\vec{v})=\pi+2k\pi$ يكون للشعاعين \vec{u} و \vec{v} اتجاهين متعاكسين

. يو ت \vec{v} و عددين حقيقيين غير معدومين من المستوي . ليكن الم \vec{v} و المحدومين غير معدومين .

- . $(k\vec{u}, k\vec{v}) = (\vec{u}, \vec{v})$ إذا كان k و k من نفس الإشارة فإن
- $\left(k\,\vec{u}\,,k\,'\vec{v}\,\right) = \left(\vec{u}\,,\vec{v}\,\right) + \pi$ إذا كان k و k من إشارتين مختلفتين فإن

تطبیق:هل العددان $\frac{41\pi}{8}$ و $\frac{9\pi}{8}$ قیسان لزاویة موجهة لشعاعین ؟

lpha-eta الحل: حتى يكون عددان حقيقيان lpha و eta قيسين لزاوية موجهة لشعاعين يكفي أن يكون $(k\in\mathbb{Z})$ مع $(k\in\mathbb{Z})$ مع الشكل n

. $2k\pi$ و هو من الشكل $\frac{41\pi}{8}-\frac{9\pi}{8}=\frac{32\pi}{8}=4\pi=2\times2\pi$

إذن العددان $\frac{9\pi}{8}$ و $\frac{9\pi}{8}$ قيسان لزاوية موجهة لشعاعين ، أو لزاويتين متقايستين .

(یمکن القول کذالك أن العددین $\frac{41\pi}{8}$ و $\frac{9\pi}{8}$ قیسان لزاویتین متقایستین)

6.1 الزوايا المحيطية

(C) دائرة مثلثية مركزها B ، A . O و B ثلاث نقط متمايزة مثنى مثنى من الدائرة (C) دائرة مثلثية مركزها $(\overrightarrow{MA}, \overrightarrow{MB})$ تسمى زاوية محيطية.

(C)نظریة: إذا کانت B ، A و M ثلاث نقط متمایزة مثنی مثنی من دائرة مثلثیة

 $\left(\overrightarrow{MA},\overrightarrow{MB}
ight)$ مرکزها O وإذا کان lpha قيسا للزاوية الموجهة $\left(\overrightarrow{OA},\overrightarrow{OB}
ight)$. فإن O فإن كان O

 $(\overrightarrow{MO},\overrightarrow{MA})$ و $(\overrightarrow{AO},\overrightarrow{AM})$ و $(\overrightarrow{AO},\overrightarrow{AM})$ و يرهان: المثلث (OAB) متساوي الساقين ، فإن الزاويتين $(\overrightarrow{AO},\overrightarrow{AM})$ و $(\overrightarrow{AO},\overrightarrow{AM})$ و $(\overrightarrow{AO},\overrightarrow{AM})$ و متناظرتان بالنسبة إلى محور القطعة (AM) و منه (AM) و منه (AM) (AO,\overrightarrow{AM}) (AO,\overrightarrow{AM}) و منه (AO,\overrightarrow{AM})

المثلث $\left(\overrightarrow{MB},\overrightarrow{MO}
ight)$ و $\left(\overrightarrow{BM},\overrightarrow{BO}
ight)$ متساوي الساقين ، فإن الزاويتين المثلث $\left(OBM
ight)$

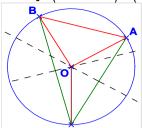
yousfisifou804@yahoo.fr مذكرات يوسفي

Yousfi Math

إلى محور القطعة $\left[BM,\overrightarrow{BO}
ight) = -\left(\overrightarrow{MB},\overrightarrow{MO}
ight)$ ومنه ومنه $\left[BM,\overrightarrow{BO}
ight]$

$$.(2)...(\overrightarrow{BM},\overrightarrow{BO}) = (\overrightarrow{MO},\overrightarrow{MB})$$
منه

من (1) و (2) نستنتج $(\overrightarrow{MA},\overrightarrow{MO}) + (\overrightarrow{MO},\overrightarrow{MB}) = (\overrightarrow{AO},\overrightarrow{AM}) + (\overrightarrow{BM},\overrightarrow{BO})$ أي



و
$$\left(\overrightarrow{MA},\overrightarrow{MB}\right) = \left(\overrightarrow{AO},\overrightarrow{AM}\right) + \left(\overrightarrow{BM},\overrightarrow{BO}\right)$$

 $2\left(\overrightarrow{MA},\overrightarrow{MB}\right) = \left(\overrightarrow{AO},\overrightarrow{AM}\right) + \left(\overrightarrow{BM},\overrightarrow{BO}\right) + \left(\overrightarrow{MA},\overrightarrow{MB}\right)$ منه

$$2(\overrightarrow{MA}, \overrightarrow{MB}) = (\overrightarrow{AO}, \overrightarrow{AM}) + (\overrightarrow{BM}, \overrightarrow{BO}) + (\overrightarrow{MA}, \overrightarrow{MB})$$

 $= (\overrightarrow{OA}, \overrightarrow{MA}) + (\overrightarrow{MA}, \overrightarrow{MB}) + (\overrightarrow{MB}, \overrightarrow{OB})$

. $\left(\overrightarrow{MA},\overrightarrow{MB}\right)$ و منه $\frac{\alpha}{2}$ قيس للزاوية $2\left(\overrightarrow{MA},\overrightarrow{MB}\right) = \left(\overrightarrow{OA},\overrightarrow{MB}\right) + \left(\overrightarrow{MB},\overrightarrow{OB}\right) = \left(\overrightarrow{OA},\overrightarrow{OB}\right)$

 $\left(O,\stackrel{
ightarrow}{i},\stackrel{
ightarrow}{j}
ight)$ الدائرة المثلثية المرفقة بالمعلم $\left(c
ight)$ الدائرة المثلثية المرفقة المعلم

المعلمة بالاعداد: F,E,C,B,A المعلمة بالاعداد: (c)

على الترتيب
$$\frac{13\pi}{4}, \frac{-2\pi}{3}, \frac{5\pi}{6}, -\frac{5\pi}{4}, \frac{\pi}{3}$$

: القوس القوس و الحالات التالية إن كان العددين الحقيقيين lpha و eta قيسان لنفس القوس أعددين الحقق في كل حالة من الحالات التالية إن كان العددين الحقيقيين lpha

$$\beta = \frac{-35\pi}{2} \mathfrak{g} \alpha = \frac{14\pi}{3} \quad \alpha = \frac{17\pi}{4} \mathfrak{g} \alpha = \frac{-5\pi}{4} \quad \beta = \frac{13\pi}{3} \mathfrak{g} \alpha = \frac{\pi}{3}$$

$$\alpha = \frac{69\pi}{3} - \pi$$

$$\beta = \frac{69\pi}{12} \cdot \alpha = \frac{-\pi}{4} \quad .$$

 $\left(O,\stackrel{
ightarrow}{i},\stackrel{
ightarrow}{j}
ight)$ الدائرة المثلثية المرفقة بالمعلم $\left(c
ight)$ الدائرة المثلثية المرفقة المعلم

: عين قيس كل من الزوايا الموجهة التالية عين الزوايا الموجهة التالية : عين قيس كل من الزوايا الموجهة التالية الموجهة التالية : $\left(u,v\right)$

$$\begin{pmatrix} \overrightarrow{-u}, -\overrightarrow{v} \end{pmatrix} \quad \cdot \quad \begin{pmatrix} \overrightarrow{v}, \overrightarrow{u} \end{pmatrix} \quad \cdot \quad \begin{pmatrix} \overrightarrow{u}, -\overrightarrow{3}v \end{pmatrix} \quad \cdot \quad \begin{pmatrix} \overrightarrow{2u}, \overrightarrow{3v} \end{pmatrix}$$

 $lpha \ rad$ التي قيسها المئيسى للزاوية الموجهة $\left(\stackrel{
ightarrow}{u}, \stackrel{
ightarrow}{v}
ight)$ التي قيسها /2

$$\alpha = 47\pi$$
 . $\alpha = \frac{20\pi}{3}$. $\alpha = \frac{-5\pi}{3}$. $\alpha = \frac{9\pi}{2}$

AD = DC عيث $\begin{bmatrix} CD \end{bmatrix}$ و $\begin{bmatrix} AB \end{bmatrix}$ عيث A في A و A و A و A فائم في A و A عين القيس الرئيسي لكل من الزوايا الموجهة التالية :

$$(\overrightarrow{BC},\overrightarrow{AD}) \cdot (\overrightarrow{BA},\overrightarrow{AD}) \cdot (\overrightarrow{BC},\overrightarrow{BA}) \cdot (\overrightarrow{AD},\overrightarrow{AC}) \cdot (\overrightarrow{DC},\overrightarrow{BA}) \cdot (O,\overrightarrow{i},\overrightarrow{j}) \text{ and if } \overrightarrow{a}$$

$$(O,\overrightarrow{i},\overrightarrow{j}) \text{ and if } \overrightarrow{a}$$

 $(OI,OB) = \frac{337}{4}\pi$ $(\overline{OI},\overline{OA}) = \frac{\pi}{4}$ علم النقط: F ·E ·D ·C ·B ·A من $(I,OB) = \frac{337}{4}\pi$

$$(\overrightarrow{OI}, \overrightarrow{OF}) = \frac{4\pi}{3} (\overrightarrow{OI}, \overrightarrow{OE}) = \frac{3\pi}{2} (\overrightarrow{OI}, \overrightarrow{OD}) = \frac{23}{3} \pi (\overrightarrow{OI}, \overrightarrow{OC}) = \frac{-\pi}{3}$$

نقطة من (C) عيث: $\frac{2007}{4} = \frac{2007}{(OI, OM)} = \frac{2007}{4}$. ثم M'/2

أنشى M.

ت3) (مبرهنة)الزاوية المحيطية والزاوية المركزية. (أنظر الشكل).

 $(\overline{MA}, \overline{MB}) = (\overline{AO}, \overline{AM}) + (\overline{BM}, \overline{BO})$. (1) بين أن: (1)

 $(OAB \cdot MAB \cdot MAB) = (\overline{OA}, \overline{OB})$ اسندن بالمثلثين $(OAB \cdot MAB \cdot MAB)$ اسندن بالمثلثين $(OAB \cdot MAB \cdot MAB)$

تطريها

المستوى: الثانية رباضيات المؤسس ميدان التعلم: السنة الدراسية: هندسة الزوايا الموجهة وحساب المثلثات الوحدة التعلمية: التارىـــخ: حساب المثلثات موضوع الحصة: توقيت الحصة:

المُكرِّسوات الجراية توظيف دساتير التحويل المتعلقة بجيب التمام و بالجيب في حل مسائل مثلثية.

الأندلة المجترحة وكبيعتما

11a_3

مثل على الدائرة المثلثية النقطة M صورة العدد x في كل حالة من الحالات الاتية $x = \frac{\pi}{2}$ $x = \frac{\pi}{4}$ $x = \frac{\pi}{4} + 19\pi$

$$x = \frac{3\pi}{4}$$

$$x = -\frac{\pi}{4} - 62\pi$$

$$ext{0}$$

$$x = \frac{\pi}{3} \mathbf{g}$$

$$x = \pi - \frac{\pi}{6} g$$

الإنجاز (سير الحسة)

2/حسارم المثلثات

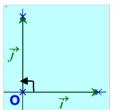
1.2 توجيه المعلم

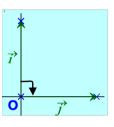
تعريف:

إذا كان $(\vec{i},\vec{j}) = \frac{\pi}{2}$ نقول أن المعلم المتعامد والمتجانس (\vec{i},\vec{j}) من المستوى مباشر.

إذا كان $\left(\vec{i}\,,\vec{j}
ight)$ فقول أن المعلم المتعامد والمتجانس $\left(\vec{i}\,,\vec{j}
ight)$ من المستوى غير مباشر

معلم متعامد ومتجانس غير مباشر





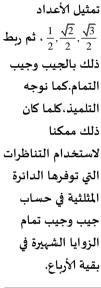
دائرة مثلثية مركزها O ، لتكن A و B نقطتين (C

من الدائرة(C)حيث أن $(O,\overrightarrow{OA},\overrightarrow{OB})$ معلم متعامد و متجانس مباشر . نضع $\overrightarrow{i}=\overrightarrow{OA}=\overrightarrow{i}$ ، لكل عدد حقيقي X صورة $\overrightarrow{OB}=\overrightarrow{j}$ على الدائرة حيث x قيس بالرديان للزاوية الموجهة $(\vec{i}, \overrightarrow{OM})$ ، نعلم أن جيب تمام (C)العدد x هو فاصلة النقطة M ونكتب $\cos x$ و أن جيب العدد x هو ترتيب النقطة M ونكتب $\sin x$. إذا كان x قيسا بالرديان للزاوية الموجهة فإن كل عدد من الشكل $x+2k\pi$ حيث k عدد صحيح هو كذالك $(\vec{i}, \overrightarrow{OM})$ قيس بالرديان للزاوية الموجهة $(\vec{i}, \overrightarrow{OM})$ و منه $x+2k\pi$ لهما نفس الصورة M على الدائرة (C) . و بالتالى: $\cos(x+2k\pi)=\cos x$ و $k \in \mathbb{Z}$ مع $\sin(x + 2k\pi) = \sin x$

. نقول أن الدالتين دوريتان و 2π دور لهما

نتائج: من أجل كل عدد حقيقي x لدينا:

- $-1 \le \cos x \le 1$ $\theta -1 \le \sin x \le 1$ $\theta \cos^2 x + \sin^2 x = 1$
 - $\cos(-x) = \cos x \bullet$ $\sin(-x) = -\sin x$ أي أنّ الدّالة جيب تمام زوجية و الدالة جيب فردية.



التعليمات والتوجيمات

• نتحقق عند

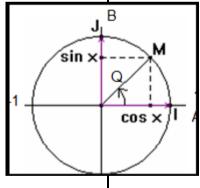
استعمال الدائرة

المثلثية من تحكم

التلميذ في تحديد

ومن $\frac{\pi}{6}, \frac{\pi}{3}, \frac{\pi}{4}$

أرباعها وصور القيم



Yousfi Math

X	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\pi/3$	$\frac{\pi}{2}$
sin x	0	1/2	$\sqrt{2}/2$	$\sqrt{3}/2$	1
$\cos x$	1	$\sqrt{3}/2$	$\sqrt{2}/2$	1/2	0

. $\sin(\vec{u},\vec{v})$ هو جيب أحد أقياسها بالرديان و نرمز له بالرمز (\vec{u},\vec{v}) هو جيب أحد أقياسها بالرديان و نرمز له بالرمز

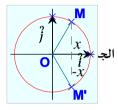
. $\cos(\vec{u},\vec{v})$ هو جيب تمام أحد أقياسها بالرديان و نرمز له بالرمز (\vec{u},\vec{v}) هو جيب تمام زاوية

3.2: جيب وجيب تماء زاوية المرافقة

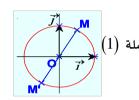
نسمى الزوايا المرفقة بزاوية موجهة حيث x قيس لها، الزوايا الموجهة التي أحد أقياسها :

$$\frac{\pi}{2} + x \cdot \frac{\pi}{2} - x \cdot \pi + x \cdot \pi - x \cdot -x$$

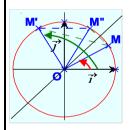
$$\begin{cases} \cos(-x) = \cos x \\ \sin(-x) = -\sin x \end{cases} 3 \begin{cases} \cos(\pi - x) = -\cos x \\ \sin(\pi - x) = \sin x \end{cases} 2 \begin{cases} \cos(\pi + x) = -\cos x \\ \sin(\pi + x) = -\sin x \end{cases} 1$$



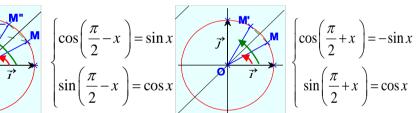




<u>ملاحظة:</u> من الجملة (3) نستنتج أن الدالة cos (جيب تمام) دالة زوجية و أن الدالة sin (جيب)



$$\begin{cases} \cos\left(\frac{\pi}{2} - x\right) = \sin x \\ \sin\left(\frac{\pi}{2} - x\right) = \cos x \end{cases}$$



$$\begin{cases} \cos\left(\frac{\pi}{2} + x\right) = -\sin x \\ \sin\left(\frac{\pi}{2} + x\right) = \cos x \end{cases}$$

$$\sin\left(-\frac{35\pi}{6}\right)$$
 (2 . $\cos\frac{17\pi}{4} + \sin\frac{21\pi}{2}$ (1 : $\cot\frac{15\pi}{6}$ (2 . $\cos\frac{17\pi}{4} + \sin\frac{21\pi}{2} = \cos\frac{16\pi + \pi}{4} + \sin\frac{20\pi + \pi}{2}$ الحل $\cos\frac{17\pi}{4} + \sin\frac{21\pi}{2} = \cos\frac{16\pi + \pi}{4} + \sin\frac{20\pi + \pi}{2}$ $= \cos 8\pi + \pi/4 + \sin 10\pi + \pi/2$ $\cos \pi/4 + \sin \pi/2 = \sqrt{2}/2$ وبالتالي $\sin\left(-\frac{35\pi}{6}\right) = \sin\left(-\frac{36\pi + \pi}{6}\right) = \sin - 6\pi + \pi/6 = 1/2$ (2 $\sin\left(-\frac{35\pi}{6}\right) = \sin\left(-\frac{36\pi + \pi}{6}\right) = \sin - 6\pi + \pi/6 = 1/2$ (2 $\sin\left(-\frac{35\pi}{6}\right) = \sin\left(-\frac{36\pi + \pi}{6}\right) = \sin - 6\pi + \pi/6 = 1/2$ (2 $\sin\left(-\frac{35\pi}{6}\right) = \sin\left(-\frac{36\pi + \pi}{6}\right) = \sin - 6\pi + \pi/6 = 1/2$ (2 $\sin\left(-\frac{35\pi}{6}\right) = \sin\left(-\frac{36\pi + \pi}{6}\right) = \sin - 6\pi + \pi/6 = 1/2$ (2 $\sin\left(-\frac{35\pi}{6}\right) = \sin\left(-\frac{36\pi + \pi}{6}\right) = \sin - 6\pi + \pi/6 = 1/2$ (2 $\sin\left(-\frac{35\pi}{6}\right) = \sin\left(-\frac{36\pi + \pi}{6}\right) = \sin - 6\pi + \pi/6 = 1/2$ (2 $\sin\left(-\frac{35\pi}{6}\right) = \sin\left(-\frac{36\pi + \pi}{6}\right) = \sin - 6\pi + \pi/6 = 1/2$ (2 $\sin\left(-\frac{35\pi}{6}\right) = \sin\left(-\frac{36\pi + \pi}{6}\right) = \sin - 6\pi + \pi/6 = 1/2$ (2 $\sin\left(-\frac{35\pi}{6}\right) = \sin\left(-\frac{36\pi + \pi}{6}\right) = \sin - 6\pi + \pi/6 = 1/2$ (2 $\sin\left(-\frac{35\pi}{6}\right) = \sin\left(-\frac{36\pi + \pi}{6}\right) = \sin - 6\pi + \pi/6 = 1/2$ (2 $\sin\left(-\frac{35\pi}{6}\right) = \sin\left(-\frac{36\pi + \pi}{6}\right) = \sin\left(-\frac$

قيس الزوايا الموجهة التالية:

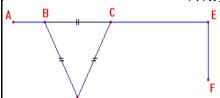
$$(\vec{u}, -\vec{3v})$$
 (3 $(2\vec{u}, \vec{v})$ (2 $(\vec{u}, -\vec{v})$ (1

$$(\vec{v}, -\vec{u})$$
 (5 $(-\vec{u}, -\vec{v})$ (4

تمرين منزلي

نعتبر النقط A ، B ، B و B في استقامية

. (AE) يعامد (EF) مثلث متقايس الأضلاع المستقيم BCD



$$\left(\overrightarrow{CE};\overrightarrow{CD}\right)$$
 (2 $\left(\overrightarrow{AB},\overrightarrow{BD}\right)$ (1

عين قيسا للزوايا الموجهة التالية

$$\left(\overrightarrow{BD},\overrightarrow{EF}\right)$$
 (4 $\left(\overrightarrow{CE},\overrightarrow{EF}\right)$ (3

<u>لحل:</u>

$$(\overrightarrow{AB}, \overrightarrow{BD})$$

$$(\overline{BC},\overline{BA})=\pi$$
 فان : في المثلث $(\overline{BC},\overline{BA})=\pi$ مثلث متقايس الأضلاع $(\overline{BC},\overline{BC})=\pi/3$ وبما ان $(\overline{AB},\overline{BD})=-\left(\left(\overline{BC},\overline{BA}\right)=\pi-\left(\overline{BD},\overline{BC}\right)=\pi/3\right)=-\pi/6$ $-\frac{\pi}{6},-\frac{\pi}{2},-\frac{2\pi}{3},-\frac{\pi}{3}$ $(\overline{CE};\overline{CD})=-\left(\overline{AB},\overline{BD}\right)=\pi/6$ تطبيق:

$$\frac{\pi}{2}$$
 $<$ x $<$ $\frac{3\pi}{2}$ و $\sin x = \frac{3}{5}$ و $\sin x = \frac{3}{5}$ عين القيمة المضبوطة ل

. $\cos^2 x + \sin^2 x = 1:x$ نعلم أنه من أجل كل عدد حقيقي

الحل 1) بما أن
$$\frac{9}{25} + \cos^2 x = 1$$
 و منه $\sin^2 x = \frac{9}{25}$ و بالتالي $\sin x = \frac{3}{5}$. و بالتالي . $\cos x = -\frac{4}{5}$ أو $\cos x = \frac{4}{5}$ و منه $\cos^2 x = \frac{16}{25}$ أن $\cos^2 x = 1 - \frac{9}{25}$ لينا $\cos x = -\frac{4}{5}$ إذن $\frac{\pi}{2} < x < \frac{3\pi}{2}$ إذن $\cos x < 0$ لينا

التي تحقق: $[-\pi;\pi]$ باستعمال الدائرة المثلثية (C) أوجد الأعداد الحقيقية x من المجال الدائرة المثلثية التي تحقق:

$$\cos x = -\frac{\sqrt{3}}{2}$$
 (2 $\cos x = \frac{1}{2}$ (1 $\sin x = -\frac{1}{2}$ (3 $x = -\pi/3$ $x = \pi/3$ (1 $x = \pi/3$ (2 $x = \pi/3$ (3 $x = \pi/3$ (3 $x = \pi/3$ (3 $x = \pi/3$ (3 $x = \pi/3$ (4 $x = \pi/3$ (5 $x = \pi/3$ (5 $x = \pi/3$ (6 $x = \pi/3$ (7 $x = \pi/3$ (7 $x = \pi/3$ (8 $x = \pi/3$ (9 $x = \pi/3$ (9 $x = \pi/3$ (1 $x = \pi/3$ (2 $x = \pi/3$ (3 $x = \pi/3$ (4 $x = \pi/3$ (5 $x = \pi/3$ (5 $x = \pi/3$ (5 $x = \pi/3$ (6 $x = \pi/3$ (7 $x = \pi/3$ (8 $x = \pi/3$

عين على الدائرة المثلثية النقطة $\,M\,$ حيث

$$\sin(\pi - x)$$
, $\cos(\pi - x)$, $\cos\left(\frac{\pi}{2} - x\right)$, $\sin\left(\frac{\pi}{2} - x\right)$, $\sin x$ (2)

$$\tan(\pi-x)$$
 ، $\tan\left(\frac{\pi}{2}-x\right)$ ، $\tan x$ احسب (3

نتائج: إذا كان x عددا حقيقيا فإنه من أجل كل عدد صحيح 1⁄2 نجد:

$$\cos(\sin(x))$$
 $\sin(x) = \sin(x + 2k\pi)$ $\sin(x) = \cos(x + 2k\pi)$ $\cos(x) = \cos(x + 2k\pi)$ $\sin(x + 2$

عبد الرحمن	ت يوسفي د	جهة وحساب المثلثا	Yousfi Math النروايا المو	الاستاذ
	الثانية رياضيات	<u>المستوى</u> :		المؤسسة:
	هندسة	<u>ميـــدان التعلم</u> :		<u>السنة الدراسية:</u>
	الزوايا الموجهة وحساب المثلثات	<u>الوحدة</u> <u>التعلمية</u> :		<u>التاريــــخ:</u>
	المعادلات والمتراجحات المثلثية	<u>موضوع الحصة :</u>		<u>توقيت الحصة :</u>
	$a\cos x + b\sin x = c$ ادلة:	ثلثية بسيطة. حلّ المع	، المعادلات المثلثية الأساسية.حلّ متراجحات م	المكتسرات القبلية حل
التعليماند والتوجيمات		لإنجاز (سير الحسة)	1	الأنشطة المغترمة وطبيعتما
نقصد هنا المتراجحات من النوع: $\cos x < a$ $\sin x < b$		U 5 🗪	1.3 معادلات المثلثية 1.3 معادلات مثلثية 1.1.3 عددين حقيقيين لهما نفس	

 $k \in \mathbb{Z}$ معناه $a = -b + 2k\pi$ أو $a = b + 2k\pi$ معناه $a = b + 2k\pi$

 $k\in\mathbb{Z}$ معناه $a=\pi-b+2k\pi$ أو $a=b+2k\pi$ معناه $\sin a=\sin b$

 $a = \cos c$ إذا كان $a \leq 1 \leq a \leq 1$ يوجد عدد حقيقي lpha حيث

مثل الحلول على الدائرة المثلثية (3 . $\sin x = -1/2$ (2 . $\cos x = \sqrt{3}/2$ (1

يكفي أخذ $\sin \pi/6 + 2k\pi$ و $\pi = \pi/6 + 2k\pi$ بما أن $\pi = \pi/6 + 2k\pi$. لإنشاء النقطة $\pi = \pi/6 + 2k\pi$ و $\pi = \pi/6 + 2k\pi$ و منه $\pi = -\pi/6 + 2k\pi$ و وبالتالي محور التراتيب النقطة التي ترتيبها $\pi = \pi/6$ اسقاطها على $\pi = \pi/6 + 2k\pi$ و بالتالي الدائرة المثلثية . $\pi = \pi/6 + 2k\pi$ مي نظيرة $\pi = \pi/6 + 2k\pi$ و منه $\pi = \pi/6 + 2k\pi$ أو $\pi = \pi/6 + 2k\pi$ بالنسبة إلى محور الفواصل ، النقطة $\pi = \pi/6 + 2k\pi$ مي نظيرة $\pi = \pi/6 + 2k\pi$ بالنسبة إلى مبدأ $\pi = \pi/6 + 2k\pi$ عن نظيرة $\pi = \pi/6 + 2k\pi$ بالنسبة إلى مبدأ

 $\begin{cases} x=eta+2k\,\pi \ . \end{cases}$ اِذَا كَانِ $a=\sin c$ عدد حقيقي eta حيث $a=\sin c$ عدد حقيقي الحلول هي $a=\sin c$

المعادلات من الشكل $\cos x = a$ عدد حقيق المعادلات من الشكل

العادلة لا تقبل حلولا. $a \in]-\infty, -1[\cup]1, +\infty[$ إذا كان

تطبيق: حل في المجموعة $\mathbb R$ المعادلتين ذات المجهول x الأتنتين

ومنه $\cos x = \cos \frac{\pi}{c}$ و بالتالي $\cos x = \sqrt{3}/2$ (1)

المحادلات من الشكل $\sin x = a$ عدد حقيق

إذا كان $[0,+\infty]$ إذا كان $[0,+\infty]$ إذا كان $[0,+\infty]$ إذا كان

تمرین منز لی $\mathbf{61}$ حل فی المجال $[0;2\pi]$ المعادلة:

 $2\cos^2 x = \sin x$ حل في المجال $[-\pi; \pi]$ المعادلة:

حل في المجال $[0;\pi]$ المعادلة:

 $\cos 2x + 2\sin x \cos x = 0$

 $\cos 7x = \cos^2 x - \sin^2 x$

 $\pi/6$ النقطة M1 الموجودة في الربع الأول صورة

[2.1.3 المعادلات المثلثية الاساسية

. $\sin x = y$ و $\cos^2 x = 1 - \sin^2 x$

 $\sin 2x = 2\sin x.\cos x$ بوضع:

 $\cos^2 x - \sin^2 x = \cos 2x$

فيما يخص

المتراجحات ،نكتفي

بحلها على مجال

طوله 2π على الأكثر ونمثّل

مجموعة الحلول

 $\int x = -\alpha + 2k \pi$

 $x = \alpha + 2k \pi$

على الدائرة المثلثية.

• بجب التركيز على الفرق بين القيس الرئيسي والهندسي

$\cos u = \sin v$ حل معادلات من الشكل 1.3

x المعادلة ذات المجهول الحقيقى المجهول الحقيقى المجموعة

. ثم مثل الحلول على الدائرة المثلثية
$$\cos\left(x-\frac{\pi}{4}\right)=\sin\left(3x+\frac{\pi}{3}\right)$$

رشادات للحل: لحل معادلة من الشكل $\cos u = \sin v$ يجب تحويل \sin إلى cos أو العكس

$$\begin{cases} \cos\left(\frac{\pi}{2} - x\right) = \sin x \\ \sin\left(\frac{\pi}{2} - x\right) = \cos x \end{cases} \qquad \begin{cases} \cos\left(\frac{\pi}{2} + x\right) = -\sin x \\ \sin\left(\frac{\pi}{2} + x\right) = \cos x \end{cases}$$

k لتمثيل الحلول على الدائرة المثلثية نعتمد على أقياس الزوايا الشهيرة .نشير إلى أن القيم التي يأخذها

في العبارة
$$\frac{2k\pi}{n}$$
 هي من 0 إلى $n-1$ (k عدد صحيح و n عدد طبيعي غير معدوم)

الحل: 1) نعلم ان

$$\frac{\pi}{6}$$
 ومنه $\cos x = \cos \frac{\pi}{6}$ و بالتالي النقطة $M1$ الموجودة في الربع الأول صورة و $\cos x = \cos \frac{\pi}{6}$

يكفي أخذ على
$$\sin\frac{\pi}{6}=\frac{1}{2}$$
 بما أن $x=-\frac{\pi}{6}+2k\pi$ يكفي أخذ على $x=\frac{\pi}{6}+2k\pi$

و منه
$$\sin x = -\sin\frac{\pi}{6}$$
 و بالتالي محور التراتيب النقطة التي ترتيها و إسقاطها $\sin x = -\sin\frac{\pi}{6}$

$$\sin x = \sin\left(-\frac{\pi}{6}\right)$$
 على

$a\cos x + b\sin x = c$ 12.3

x المعادلة ذات المجهول الحقيقى المجهول الحقيقى المجهول الحقيقى المجهوعة \mathbb{R}

 $(a;b) \neq (0;0)$ أعداد حقيقيية و (1)..... $a\cos x + b\sin x = c$

$$\left(\frac{a}{\sqrt{a^2+b^2}}\right)^2+\left(\frac{b}{\sqrt{a^2+b^2}}\right)^2$$
 خسب أ

.
$$\sin \alpha = \frac{b}{\sqrt{a^2 + b^2}}$$
 و $\cos \alpha = \frac{a}{\sqrt{a^2 + b^2}}$: استنتج أنه توجد زاوية α حيث أن

.
$$\cos x.\cos \alpha + \sin x.\sin \alpha = \frac{c}{\sqrt{a^2 + b^2}}$$
 (3) استنتج أن المعادلة (1) تكتب (3

.
$$\cos(x-\alpha) = \frac{c}{\sqrt{a^2+b^2}}$$
باستعمال دساتير الجمع استنتج أن (1) تكتب (4

ملاحظة: في السؤال الثالث كان بإمكاننا وضع
$$\frac{a}{\sqrt{a^2+b^2}}$$
 و $\sin \alpha = \frac{a}{\sqrt{a^2+b^2}}$ ثم ثم

$$\sin(x+\alpha) = \frac{c}{\sqrt{a^2+b^2}}$$
 : كلى الشكل (1) على الشكل البيع ، نكتب المعادلة (1) على الشكل

تطبيق: حل في المجموعة $\mathbb R$ المعادلة ذات المجهول الحقيقي x في كل حالة من الحالات الآتية :

$$\cos x + \sin x = 1 \quad (1$$

$$.\sqrt{3}\cos x + \sin x = 1$$
 (2)

$$\sqrt{2}\cos 2x - \sqrt{2}\sin 2x = -1$$
 (3)

(
$$m$$
 ناقش تبعا لقيم الوسيط الحقيقي) $\cos 3x - \sqrt{3} \sin 3x = m$ (4

المتراجحات من النوع: $\cos x < a$... $\sin x < b$ فيما يخص المتراجحات ،نكتفي بحلها على مجال طوله 2π على الأكثر ونمثّل مجموعة الحلول على الدائرة المثلثية.

4/المتراجدات المثلثية

$\cos x < a$ مترايط الشكل عترايط الشكل.

a) (1) ... $\cos x < a$: x قي المجموعة $[0,2\pi]$ لتكن المتراجحة ذات المجهول الحقيقي المجموعة $[0,2\pi]$ عدد حقيقي) .

- $.[0,2\pi[$ فإن المتراجعة (1) ليس لها حلول في $a \le -1$ اثبت أنه إذا كان $a \le -1$
- . (1) فإن المتراجعة الحلول المتراجعة $a \ge 1$ فإن أثبت أنه إذا كان $a \ge 1$ فإن $a \ge 1$
 - فإنه يوجد عددين متعاكسان lpha و eta من أثبت أنه إذا كان 1 < a < 1

. $\cos \alpha = \cos \beta = a$ ميث أن $\left[0, 2\pi\right[$ المجال

M نسمي M صورة lpha على الدائرة المثلثية و نسمي M صورة eta على الدائرة المثلثية ، أثبت أن M و M متناظرتان بالنسبة إلى محور الفواصل.

- . a استنتج مجموعة نقط الدائرة المثلثية التى فواصلها أصغر من a
 - . $\lceil 0, 2\pi \rceil$ استنتج حلول المتراجحة (1) على المجال (5

ملاحظة: في المتراجعات من الشكل $x \le a \le a$ الحالتان a = 1 و a = 1 تدرس على حدى a = 1 تطبيق: حل في المجموعة a = 1 المتراجعات ذات المجهول الحقيقي a = 1 ثم مثل الحلول على الدائرة المثلثية . في كل حالة من الحالات الآتية:

 $\cos 4x - \frac{1}{2} > 0$ (4 $2\cos 2x - \sqrt{3} \ge 0$ (3 $\sqrt{2}\cos 3x + 2 \le 0$ (2 $2\cos x < 1$ (1)

$\sin x < b$ جل متراجعات من الشكل 2.4

عدد b) (1) ... $\sin x < b$: في المجموعة $\left[-\pi, \pi \right]$ لتكن المتراجحة ذات المجهول الحقيقي x < b : حقيقي a عدد حقيقي a .

- .] $-\pi$, π] فإن المتراجحة (1) ليس لها حلول في $b \leq -1$ كان (1
- (1) فإن $b \geq 1$ فإن $[-\pi,\pi]$ فإن أثبت أنه إذا كان $b \geq 1$
- و من المجال $\left[-\pi\,,\pi\right]$ حيث أن $\left[-\pi\,,\pi\right]$ فإنه يوجد عددان α و β من المجال $\sin\alpha=\sin\beta=b$

نسمي M صورة α على الدائرة المثلثية و نسمي M صورة β على الدائرة المثلثية ، أثبت أن نسمي M و M متناظران بالنسبة إلى محور التراتيب.

. b استنتج مجموعة نقط الدائرة المثلثية التي تراتيها أصغر من

.] $-\pi$, π] استنتج حلول المتراجحة (1) على المجال

ملاحظة: في المتراجعات من الشكل $\sin x \le b$ الحالتين b=-1 و b=1 تدرس على حدى .

تطبيق: حل في المجموعة $[0,2\pi]$ المعادلة ذات المجهول الحقيقي x ثم مثل الحلول على الدائرة المثلثية . في كل حالة من الحالات الآتية x

 $.2\sin 4x - \sqrt{2} > 0$ (4 $.2\sin 5x + \sqrt{3} \ge 0$ (3 $.\sqrt{2}\sin 4x - 1 \le 0$ (2 $.\sin x < -\frac{1}{2}$ (1

 $\frac{5\pi}{12} = \frac{\pi}{4} + \frac{\pi}{6}$ و $\frac{\pi}{12} = \frac{\pi}{4} - \frac{\pi}{6}$: لاحظ أن $\sin \frac{5\pi}{12}$ و $\cos \frac{\pi}{12}$ و $\cos \frac{\pi}{12}$

 $\cos\left(-\frac{\pi}{12}\right)$ و $\sin\frac{13\pi}{12}$ قر $\sin\frac{7\pi}{12}$. ثم إستنتج $\sin\frac{7\pi}{12}$ و $\cos\frac{7\pi}{12}$

$$-\frac{\pi}{12} = \frac{\pi}{2} - \frac{7\pi}{12}$$
 . $\frac{13\pi}{12} = \frac{\pi}{2} + \frac{7\pi}{12}$: لاحظ أن

مذكرات يوسفى <u>yousfisifou804@yahoo.fr</u>

. لتمرين الخامس: 1/ عين قيمة cos x و sin x من أجل:

$$x = \frac{29\pi}{6}$$
 , $x = -\frac{5\pi}{3}$, $x = \frac{2\pi}{3}$, $x = -\frac{\pi}{4}$

$$\sin\left(\frac{5\pi}{2} + x\right) - 2\cos\left(\frac{21\pi}{2} - x\right) - 3\sin(x - 3\pi) + \sin\left(\frac{3\pi}{2} + x\right) = \sin x$$

المعادلة : $\cos\left(x-\frac{\pi}{4}\right)$ المعادلة : الشرين السادس

$$\sin\frac{\pi}{8}$$
 و $\cos\frac{\pi}{8}$: أحسب -2 ، $\cos x + \sin x = \sqrt{2}$

المتعامد والمتجانس $\left(O,\stackrel{
ightarrow}{i},\stackrel{
ightarrow}{j}
ight)$ المتعامد والمتجانس

1 / أحسب ألإحداثيتين الديكارتيتين كمايلي : B و B المعرفتين بالإحداثيتين الديكارتيتين كمايلي :

$$B\left(-\frac{3}{2},\frac{3\sqrt{3}}{2}\right)$$
. $A(-1,1)$

2/ أحسب ألإحداثيات الديكارتية للنقطتين C و D المعرفتين بالإحداثيتين القطبيتينكمايلى :

$$D\left(4, \frac{-7\pi}{6}\right)$$
. $C\left(3, \frac{\pi}{6}\right)$

المتعامد والمتجانس ($O,\stackrel{
ightarrow}{i},\stackrel{
ightarrow}{j}$ المتعامد والمتجانس

 $\left(\overrightarrow{AO},\overrightarrow{AM}
ight)=rac{7\pi}{12}$ و AM=2 و منقطة A و أحداثياتها الديكارتية $\left(\sqrt{6},\sqrt{2}
ight)$ و التكن النقطة A

A عين الإحداثيات القطبية للنقطة 1

$$\left(\overrightarrow{i},\overrightarrow{AM}\right) = -rac{\pi}{4}$$
: اتحقق أن 2

M المعرفة ب $\overrightarrow{OB} = \overrightarrow{AM}$ ثم إستنتج إحداثيات النقطة ألم المعرفة ب $\overrightarrow{OB} = \overrightarrow{AM}$ ثم إستنتج إحداثيات النقطة $\cos(x+y) = \cos x \cos y - \sin x \sin y$: المعرف أن التمرين التاسع: x و x عددان حقيقيان ، إذا علمت أن : $\cos 2x + \sin^2 x = 0$ ثم حل في المجال $[-\pi, \pi]$ المعادلة : $\cos 2x + \sin^2 x = 0$ ألمعادلة على الدائرة المثلثية

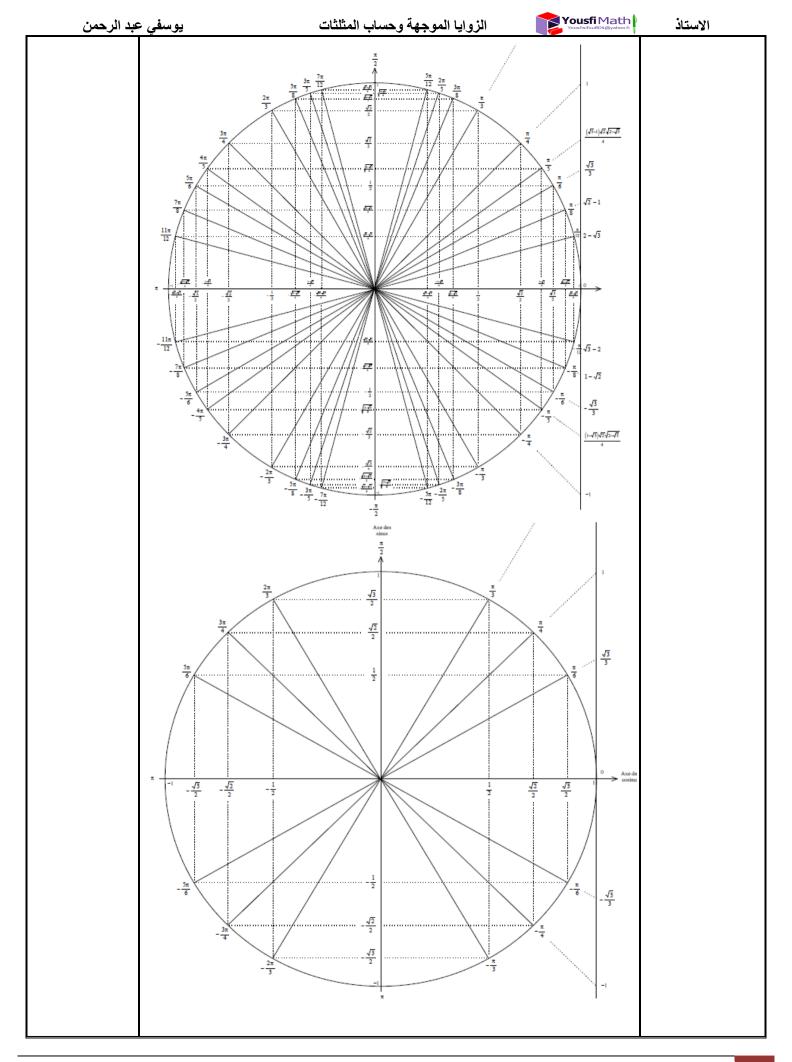
$$\sin\left(2x+\frac{\pi}{4}\right) = -\frac{\sqrt{3}}{2}$$
 . ب- $\cos\left(2x-\frac{\pi}{4}\right) = \frac{1}{2}$ مايلي : ا- $\cos\left(2x-\frac{\pi}{4}\right) = \frac{1}{2}$ ، ب- $\cos\left(2x-\frac{\pi}{4}\right) = \frac{1}{2}$

$$2\cos^2 x - 3\cos x - 2 = 0$$
 هـ $\sin 2x = \cos\left(x + \frac{\pi}{6}\right)$ د $\cos x + \sin x = 0$ - ح

$$4\cos^2 x + 2(1 - \sqrt{3})\cos x - \sqrt{3} = 0$$
 و-

$$2\sin x + \sqrt{2} \le 0$$
 . ب- $2\sin x + \sqrt{2} = 0$ مايلي : أ- $2\sin x + \sqrt{2} = 0$. ب- $2\sin x + \sqrt{2} \le 0$. ب- $2\sin x + \sqrt{2} \le 0$

$$1 - \sqrt{2}\cos\left(x - \frac{\pi}{3}\right) \le 0$$



$\cos^2 a = \frac{1 + \cos 2a}{1 + \cos 2a}$	2 2 2	(1)
$\cos^2 a = \frac{1}{2}$	$\cos 2a = \cos^2 a - \sin^2 a$	$\cos(a-b) = \cos a \cos b + \sin a \sin b$
1-cos 2a		l l
$\sin^2 a = \frac{1-\cos 2a}{2}$	$\cos 2a = 2\cos^2 a - 1$	$\cos(a+b) = \cos a \cos b - \sin a \sin b$
2:_2 .	2 1 2-:-2	
$\cos^2 a + \sin^2 a = 1$	$\cos 2a = 1 - 2\sin^2 a$	$\sin(a+b) = \sin a \cos b + \cos a \sin b$
$1 + \tan^2 a = \frac{1}{1 + \tan^2 a}$	$\sin 2a = 2\sin a \cos a$	$\sin(a-b) = \sin a \cos b - \cos a \sin b$
$1 + \tan^2 a = \frac{1}{\cos^2 a}$	5111 2ti — 25111 ti CO5 ti	sin(u - b) - sin u cosb - cosa sin b

$$\cos p + \cos q = 2\cos\left(\frac{p+q}{2}\right)\cos\left(\frac{p-q}{2}\right)$$

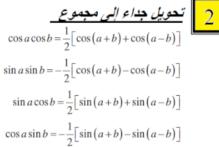
$$\cos p - \cos q = -2\sin\left(\frac{p+q}{2}\right)\sin\left(\frac{p-q}{2}\right)$$

$$\sin p + \sin q = 2\sin\left(\frac{p+q}{2}\right)\cos\left(\frac{p-q}{2}\right)$$

$$\sin p - \sin q = 2\cos\left(\frac{p+q}{2}\right)\sin\left(\frac{p-q}{2}\right)$$

 $-\sin x = \sin (-x)$

Yousfi Math



$$k \in \mathbb{Z} \quad \mathfrak{z} \quad a+b \neq \frac{\pi}{2}+k\pi \quad \mathfrak{z} \quad b \neq \frac{\pi}{2}+k\pi \quad \mathfrak{z} \quad a \neq \frac{\pi}{2}+k\pi \quad \vdots \quad \tan(a+b) = \frac{\tan a + \tan b}{1-\tan a \tan b}$$

$$k \in \mathbb{Z} \quad \mathfrak{z} \quad a-b \neq \frac{\pi}{2}+k\pi \quad \mathfrak{z} \quad b \neq \frac{\pi}{2}+k\pi \quad \mathfrak{z} \quad a \neq \frac{\pi}{2}+k\pi \quad \vdots \quad \tan(a-b) = \frac{\tan a - \tan b}{1+\tan a \tan b}$$

$$k \in \mathbb{Z} \quad \mathfrak{z} \quad a-b \neq \frac{\pi}{2}+k\pi \quad \mathfrak{z} \quad a \neq \frac{\pi}{4}+\frac{k\pi}{2} \quad \mathfrak{z} \quad a \neq \frac{\pi}{2}+k\pi \quad \vdots \quad \tan(2a) = \frac{2\tan a}{1-\tan^2 a}$$

$$k \in \mathbb{Z}$$
 يوضع: $(\frac{x}{2})$ $x \neq \pi + 2k\pi$ و $(\frac{x}{2})$ $x \neq \frac{\pi}{2} + k\pi$ و $(\frac{x}{2})$ $(\frac{x}{2})$

$$a\cos x + b\sin x = \sqrt{a^2 + b^2}\sin(x+\beta) \qquad \mathfrak{z}^{f} \qquad a\cos x + b\sin x = \sqrt{a^2 + b^2}\cos(x-\alpha)$$

$$\sin \beta = \frac{a}{\sqrt{a^2 + b^2}} \quad \mathfrak{z} \cos \beta = \frac{b}{\sqrt{a^2 + b^2}} \quad \mathfrak{z} \cos \beta = \frac{a}{\sqrt{a^2 + b^2}} \quad \mathfrak{z} \cos \alpha = \frac{a}{$$

```
-\cos x = \cos (pi - x)
                                         -\tan x = \tan (-x)
                                                  معادلات مثلثية
a = pi - x + 2. k.pi ] z = sin a <=> [a = x + 2. k.pi
  a = -x + 2. k.pi ] z \delta cos x= cos a <=> [ a = x + 2. k.pi
                        Tan x = tan a \ll [a = x + k.pi] z
                                    Sin X = 0 <=> X = k.pi
                            Cos X = 0 <=> X = pi/2 + k.pi
                          Sin X = 1 <=> X = pi/2 + 2. k.pi
                                 Cos X = 1 <=> X = 2.k.pi
                        Sin X = -1 <=> X = - pi/2 + 2. k.pi
                            Cos X = -1 <=> X = pi + 2. k.pi
                                                    صيغ التحويل
                 Cos(a+b) = cos a \cdot cos b - sin a \cdot sin b
                 Cos (a - b) = cos a \cdot cos b + sin a \cdot sin b
                 Sin (a + b) = sin a \cdot cos b + cos a \cdot sin b
                  Sin(a-b) = sin a \cdot cos b - cos a \cdot sin b
```

Tan $(a + b) = \tan a + \tan b/1 - \tan a \cdot \tan b$ $Tan(a-b) = tan a - tan b/1 + tan a \cdot tan b$

Sin a . cos b = $\frac{1}{2}$ [sin (a + b) + sin (a - b)]