مستوى: سنة أولى جدع مشترك علوم

الميدان: الأعداد و الحساب

الكفاءات المستهدفة: إختيار معيار لمقارنة عددين.

إيجاد حصر لعدد حقيقي. حصر عبارة جبرية.

حصر عبارة تتضمن مقلوبا. حصر مجموع وجداء عددين حقيقيين.

الوسائل التعليمية: الكتاب المدرسي، المنهاج ، الوثيقة المرفقة

الموضوع: المتباينات و الحصر المتباينات و الحصر

شاط 20دقیقة

$$b = \frac{25}{6}$$
، $a = \frac{13}{3}$: و a عددان حقیقیان حیث a

a-b . ثم استنتج اشارة a-b .1.

b و a قارن بين العددين.

$$a = \frac{562}{101}$$
 ، $a = 5,61$ و $a = 6$ عددان حقیقیان حیث: $a = 6$

.b و a قارن بين العددين

$$b=\sqrt{2}-1$$
 ، $a=\frac{1}{\sqrt{2}+1}$:و $a=a$ عددان حقیقیان حیث a

.
$$\frac{1}{h}$$
 و $\frac{1}{a}$. 1.1

$$\frac{1}{a} - \frac{1}{b}$$
 احسب.

a و a ما الذي يمكن قوله عن العددين.

I. المتباينات 🖰 3 ساعات

الترتيب في مجموعة الأعداد الحقيقية $_{\mathbb{R}}$ الترتيب في مجموعة الأعداد الحقيقية $_{\mathbb{R}}$

تعریف 1

و b عددان حقیقیان.

- $a-b\in\mathbb{R}^+$. القول إِنّ a أكبر من b أو يساويه معناه a-b عدد موجب. ونكتب: a
- $a-b\in\mathbb{R}^-$ معناه: $a\leq b$ عدد سالب ونكتب: $a\leq b$ معناه: $a\leq b$

a < b: نقول أن: a أصغر من b و كتب $a \neq b$ نقول أن: a أصغرتماما من a

تعریف 2

مقارنة عددين a و a معناه التصريح بصحة إحدى الحالات الثلاث الآتية: $a = b^*$ $a < b^*$

مثال:

 $b=7-\sqrt{11}$ و $a=1+2\sqrt{2}$ من أجل a>b موجب تماما، وبالتالي: a>b

تعليق: يمكن إختبار مقارنة عددين بالحاسبة

مبرهنة 1

$$a \le c$$
 فإنّ $c \cdot b \cdot a$ فإنّ $c \cdot b \cdot a$ فإنّ أعداد حقيقية من أجل كلّ أعداد حقيقية

بر هان

إذا كان $a \le b$ و a - b فإنّ a - b و a - b سالبان، وبالتالي يكون مجموعهما سالبا، (a - b) + (b - c) = a - b + b - c = a - c سالب. لكن (a - b) + (b - c) = a - b + b - c = a - c سالب. لكن

 $a \le c$ منه $a - c \in \mathbb{R}$ ، وهذا معناه

تقويم:

| 🕮 <u>تمرين 18 صفحة</u> 43

 a^2-8a و a^2-8a و a^2-8a و 1. بفرض a^2-8a و a^2-8a

 $2-8\sqrt{2}$ و $2-8\sqrt{2}$ و 1-2. و 1-2. و 1-2. و 1-3. و 1-3.

<u>تمرين تطبيقي:</u>

 $3x+1 \ge 4$ و $2-5x \le -3$ و $3x+1 \ge 4$ و $1 \le 1 \le 3$

2.الترتيب والعمليات

أ-الترتيب والجمع

مبرهنة 2

 $a+c \leq b+c$ من أجل كلّ أعداد حقيقية $a \leq b$: إذا كان $a \leq b$ فإنّ

بر هان

(a+c)-(b+c)=a-b کن $a-b\in a$ معناه $a\leq b$

 $a+c \le b+c$ وهذا يعني أنّ $\mathbb{R}(a+c)-(b+c) \in \mathbb{R}$ ومنه

متال

أستطيع أن أضيف نفس العدد إلى طرفي متباينة:

 $a \le b-3$ \longrightarrow $a+5 \le b+2$

مبرهنة 3

 $a+c \leq b+d$ فإنّ $a+c \leq b+d$ من أجل كلّ أعداد حقيقية $a+c \leq b+d$ اذا كان $c \leq d$

برهان

 $b+c \le b+d$ و $a+c \le b+c$: المبرهنة $a+c \le b+c$ و $a \le b$ و $a \le b+c$ و $a \le b+c$ و $a+c \le b+d$. $a+c \le b+d$

مثال

أستطيع أن أجمع طرفا بطرف متباينتين من نفس الاتجاه.

$$a+b \le -1$$
 اجمع طرفا بطرف $b \le -3$ و $a \le 2$

ب-الترتيب والضرب

مبرهنة 4

أعداد حقيقية. $c \cdot b \cdot a$

 $ac \le bc$ يكافئ $a \le b$ لدينا: bc = 0 من أجل bc = 0

 $ac \ge bc$ يكافئ $a \le b$ لدينا: $c \ 0$ من أجل

ac-bc=(a-b)c برهان: لدينا

.>c 0 من أجل

يكون للعددين a-b و ac-bc نفس الإشارة.

. $a\!-\!b\in\!\mathbb{R}^-$ وحيث أنّ $a\!\leq\!b$ يكافئ

 $ac \leq bc$ يكافئ $a \leq b$ وبالتالي $a \leq b$ يكافئ $\mathbb{R} \, a - bc \in \mathbb{R} \, a - b$ ينتج عنه

.<c 0 من أجل ■</p>

يكون للعددين a-b و a-bc إشارتين مختلفتين.

 $\mathbb{R} a - b \in \mathcal{L}$ يكافئ $a \le b$ أنّ

 $ac \geq bc$ ينتج عنه $a \leq b$ يكافئ $\mathbb{R}^+ ac - bc \in \mathbb{R}^+$ وبالتالي $a \leq b$ ينتج

مثال: أستطيع أن أضرب طرفي متباينة في نفس العدد الموجب:

 $a \le 3b$ أضرب في $0.1a \le 0.3b$

أستطيع أن أضرب طرفي متباينة في نفس العدد السالب بشرط أن أغيّر اتجاه المتباينة:

 $a \ge -10$ اضرب في $a \ge -10$

مبرهنة 5

 $d\cdot c\cdot b\cdot a$ من أجل كل أعداد حقيقية موجبة

. $ac \leq bd$ فإنّ $a \leq b$ و $a \leq b$

بر هان

 $c \leq d$ و $a \leq b$ نفرض موجبة حيث d ، c ، b ، a نفرض

 $ac \leq bd$ أو c = 0 فإنّ b = 0

 $ac \leq bd$ و بالتالي $bc \leq bd$ و $ac \leq bc$ و و مرحونة 4)، وبالتالي $ac \leq bc$

(حسب المبرهنة 1).

مثال

أستطيع أن أضرب طرفي متباينتين من نفس الاتجاه، طرفا بطرف، عندما يتعلق الأمر بأعداد موجبة:

 $ab \le 5$ ف $a \le \frac{1}{2}$ أضرب طرفا بطرف $a \le \frac{1}{2}$

ج- ترتیب مربعین عددین

مبرهنة 6

عددان حقیقیان. b ، a

 $a^2 \le b^2$ من أجل $a \le b$ و $b \ge 0$ لدينا $a \le b$ من أجل $a \ge 0$

 $a^2 \ge b^2$ من أجل $a \le b$ و $b \le 0$ لدينا $a \le b$ يكافئ $a \le 0$

حذار! من تطبيق قواعد المقارنة بين الأعداد دون أخذ إشاراتها بالاعتبار.

بر هان

 $a^2 - b^2 = (a - b)(a + b)$ نعلم أنّ

 $b \ge 0$ و $a \ge 0$

لدينا a-b ، a^2-b^2 ومنه العددان \mathbb{R}^+a+b من نفس الأشارة.

 $\mathbb{R} a - b \in \mathbb{R}$ وحيث أنّ $a \le b$

 $a^2 \leq b^2$ ينتج أنّ $a \leq b$ يكافى $\mathbb{R} a^2 - b^2 \in \mathbb{R}$ وبالتالى $a \leq b$ ينتج

 $b \le 0$ من أجل $a \le 0$ و

لدينا $a-b \in \mathbb{R}$ ومنه العددان a-b ، a^2-b^2 من إشارتين مختلفتين.

 $\mathbb{R} a - b \in \mathcal{A}$ وحيث أنّ $a \le b$ يكافئ

 $a^2 \ge b^2$ ينتج أنّ $a \le b$ يكافى $\mathbb{R}^+ a^2 - b^2 \in \mathbb{R}$ وبالتالى $a \le b$ يكافئ

أرتب مربعي عددين موجبين والجذرين التربيعيين لهما بنفس ترتيب هذين العددين وأرتب مربعي عددين سالبين في الاتجاه المعاكس لترتيبهما.

 $\sqrt{a} \le \sqrt{2}$ و $a^2 \le 4$ فإنّ $0 \le a \le 2$ و

<u>تقوىم:</u>

مرىن 24 صفحة 44 علم

رتّب تصاعديا الأعداد a^3 و a^2 و الحالتين:

$$a = \frac{3+\sqrt{3}}{3}$$
, $a = \sqrt{2}-1$

د- ترتیب جذرین تربیعیین مبرهنهٔ 7

 $\sqrt{a} \le \sqrt{b}$ يكافئ موجبان لدينا : $a \le b$ يكافئ موجبان موجبان لدينا

المبرهنة: لإثبات المبرهنة 7 يمكن الاعتماد على المبرهنة 6.

ه- ترتیب مقلوب عددین

مبرهنة 8

 $rac{1}{a} \geq rac{1}{b}$ يكافئ $a \leq b$ يكافئ ومن نفس الإشارة لدينا: $a \leq b$ يكافئ $a \leq b$. a

$$\frac{1}{a} - \frac{1}{b} = \frac{b-a}{ab}$$
 من الاستفادة من يمكن الاستفادة من البرهنة:

أُرتّب مقلوبي عددين حقيقيين غير معدومين ومن نفس الاشارة في التّرتيب المعاكس لترتيبهما. $\frac{1}{a} \ge \frac{1}{2}$ إذا كان $a \le 2$ فإنّ $a \le 2$

و- ترتیب قوی عدد حقیقی مبرهنة و

a عدد حقیقی لدینا:

- $a^3 \le a^2 \le a$ فإنّ $0 \le a \le 1$ إذا كان \bullet
 - $a^3 \ge a^2 \ge a$ فإنّ $a \ge 1$ إذا كان $a \ge 1$

بر هان

- $a^3 \le a^2$ وبالتالي $a^2 \le a$ ، فإنّ $a \le a \le 1$ إذا كان $a \le a \le 1$
 - $a^3 \le a^2 \le a$
 - $a^3 \ge a^2$ وبالتالي $a^2 \ge a$ فإنّ $a \ge 1$ وبالتالي الحان ا

 $a^3 \ge a^2 \ge a$

ملحظة: يمكن تعميم ترتيب قوى عدد حقيقي موجب a كما يلي:

إذا كان a محصور ابين 0 و 1، فإنّ قوى a ترتب ترتبيا تنازليا.

اذا كان a أكبر من 1، فإنّ قوى a ترتب ترتيبا تصاعديا.

مثال

.
$$\frac{1}{2^3} \le \frac{1}{2^2} \le \frac{1}{2}$$
 دينا $a = \frac{1}{2}$ ، و من أجل $a = 2$ دينا $a = 2$ دينا $a = 2$

اا. الحصر

نشاط 15® دقیقه

عدد حقيقي حيث: (نقول أن محصور بين العدد و).

 $x^2 + x$ و x - 1، $\frac{1}{x}$ ، -x و x - 1

تعريف

 $a \le x \le b$ حصر عدد حقیقی x یعنی إیجاد عددین a و b حیث

مثال

باستعمال حاسبة، نحصل على: 2,23607pprox 5 وهي القيمة المدوّرة للعدد $\sqrt{5}$ إلى $^{-5}$ 10.

 $2 \le \sqrt{5} \ge 3$ هو حصر العدد $\sqrt{5}$ ، بالتقریب إلى الوحدة. $2 \le \sqrt{5} \le 3$ هو حصر العدد $\sqrt{5}$ ، بالتقریب إلى 10^{-2}

كاتقويم: 🖰 1 ساعة و نصف

تمرين تطبيقي:

. $1 \le a \le 7$ و $a \le a \le 8$ و عددان حقيقيان حيث $a \le a \le 8$

 $\frac{a+b}{a-b}, \frac{a}{b}, a-b, a \times b, a+b$: أعط حصرا لكل من

🕮 تمرين 66 صفحة 47

a عدد حقيقي حيث: 2 · 1 −1.

 $\frac{1}{2a-5}$: 7-3a : 5a-2 : 2a+1 استنتج من هذا الحصر حصرا لكلّ من الأعداد الآتية:

🕮 تمرين 67 صفحة 47

b.2 < b < 3 عدد حقيقي حيث: b.3

 $\frac{2-b^2}{5}$ أعط حصرا للعدد

.1 << a 2 عدد حقيقي a عدد عقيقي.2

b-2a أعط حصرا للعدد

تعليق:

1-طرح الاشكال على

التلاميذ.

2-توظيف المبرهنات