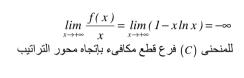
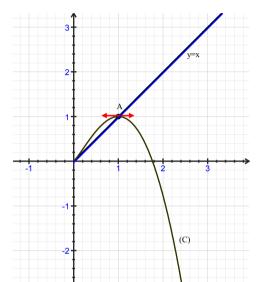
$[f(x)-x]=-x^2 \ln x$ يراسة وضعية (C) بالنسبة للمماس بالنسبة للمماس يا

х	0		1	+∞
إشارة -x²ln(x)		+	0	_

A(1,1) من أجل x=1 يكون f(x)-x و بالتالي المنحنى f(x) و المماس من أجل x=1 من أجل المنحنى أج (Δ) ومن أجل كل (C) يقع فوق المماس [f(x)-x]>0 يقع فوق المماس [f(x)-x]>0 ومن أجل كل عن من االمجال [f(x)-x]>0 (Δ) و من أجل كل (C) يقع تحت المماس [f(x)-x]<0 و بالتالي المنحنى و من أجل كل $[I:+\infty[$ ج - رسم كل من (<u>ك</u>) و (C):





 $u_{n+1} = u_n - u_n^2 \ln(u_n)$ أي أن $u_{n+1} = f(u_n) : n$ عدد طبيعي $u_n \in [0, 1]$ و من أجل كل عدد طبيعي .4 $0 < u_n < 1$: n أ- إثبات أنه من أجل كل عدد طبيعي

n=0 من أجل من صحة الخاصية p(n) من أجل نتأكد من صحة الخاصية p(0) محیحة وبالتالي فإن الخاصية p(0) أي أن أن $u_0 \in [0]$ وبالتالي فإن الخاصية

0 < u < 1 أي n < u < 1 فرض أن الخاصية p(n) صحيحة من أجل كل عدد طبيعي ونثبت صحة الخاصية p(n+1) أي $0 < u_{n+1} < 1$ من أجل كل عدد طبيعي p(n+1)

 $0 < f(u_n) < 1$: و بمأن الدالة f متزايدة تماما على المجال [0; 1] فإن $[0, f(u_n) < f(u_n) < 1]$ ومنه فإن الدالة ومتا الدينا n عدد طبيعى من أجل كل عدد طبيعى من أجل كل عدد طبيعى p(n+1)

n عدد طبيعي مستنتج حسب مبدأ الإستدلال بالتراجع أن الخاصية p(n) صحيحة من أجل كل عدد طبيعي

ب ـ إثبات أن المتتالية (u_n) متزايدة :

 $-u_n^2 \ln(u_n) u_n - u_n^2 \ln(u_n) - u_n = u_{n+1} - u_n = : n$ are defined as n = 1بمأان $u_{n+1} - u_n > 0$ فإن $u_n > 0$ ومنه فإن $u_{n+1} - u_n > 0$ بمثر ايدة $u_n < 1$ بمأل المتتالية $u_n < 1$ $\lim_{n \to \infty} u_n = 1$ متزايدة ومحدودة من الأعلى بالعدد 1 فهي متقاربة و

تمرين رقم 71 ص 142 الجزء01 المستوى: نهائي

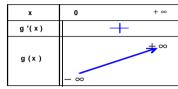
الفرض المنزلي رقم 4: التصحيح

 $g(x) = -1 + x + 2 \ln x$ دالة معرفة على $g(x) = -1 + x + 2 \ln x$ و دالة معرفة على

 $g'(x) = \frac{x+2}{x}$: حيث : g أبلة للإشتقاق على المجال $g'(x) = \frac{x+2}{x}$ الدالة $g'(x) = \frac{x+2}{x}$ الدالة والمجال $g'(x) = \frac{x+2}{x}$

]0 ; $+\infty[$ المجال على المجال g'(x)>0 أي أن g'(x)>0 أي أن (x+2)>0 أي أن (x+2)>0 أجل كل (x+2)>0 أجل كل (x+2)>0 أي أن أجل كل (x+2)>0 أي أن أبل كل (x+2)>0 أن أبل كل (x+2)>0 أي أن أبل كل (x+2)>0 أن أبل كل كل أبل كل أبل كل أبل كل أبل كل كل أبل كل أبل كل أبل كل أبل كل كل أبل كل كل أبل كل أبل

$$\left(\lim_{x\to+\infty}g\left(x\right)=+\infty \quad , \quad \lim_{x\to0}g\left(x\right)=-\infty\right): \underbrace{}$$



ب - $g(1) = -1 + 1 + 2 \ln 1 = 0$ ، من جدول تغیرات الدلة g نستنتج أن :

х	0		1	+∞
اشارة (g(x		_	0	+

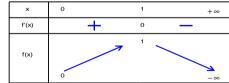
 $f\left(0
ight)=0$ و x>0 إذا كان $f\left(x
ight)=x-x^{2}\ln x$ بنا $f\left(x
ight)=0$ و $f\left(x
ight)=0$ أ. الدالة $f\left(x
ight)=0$ قابلة للإشتقاق على المجال $f\left(x
ight)=0$ حيث :

$$f'(x) = 1 - 2x \ln x - x^2 \times \frac{1}{x} = 1 - 2x \ln x - x = 1 + 2x \ln \left(\frac{1}{x}\right) - x = x \left(\frac{1}{x} + 2\ln \left(\frac{1}{x}\right) - 1\right) = xg\left(\frac{1}{x}\right)$$

$$\frac{1}{x} \int \frac{1}{x} \left(\ln \ln \ln \frac{1}{x} \right) dx = 1 - 2x \ln x - x = 1 + 2x \ln \left(\frac{1}{x}\right) - x = x \left(\frac{1}{x} + 2\ln \left(\frac{1}{x}\right) - 1\right) = xg\left(\frac{1}{x}\right)$$

 $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(x - x^2 \ln x\right) = \lim_{x \to +\infty} \left[x^2 \left(\frac{1}{x} - \ln x\right)\right] = -\infty$ و f(0) = 0 : f(0) = 0

 $g\left(rac{I}{x}
ight)$ من إشارة f'(x) من أجل كل f'(x) من أجل كل g(x) من إشارة g(x) من إشارة g(x) من المجال g(x) من المجال g(x)f'(x) < 0 , $I : +\infty$ من المجال f'(x) > 0 و من أجل كل x من المجال f'(x) > 0 , f'(x) > 0 ,



f(2) = -0.77 و $f\left(\frac{7}{4}\right) = 0.036$ و $\left[\frac{7}{4}; 2\right]$ ومن ثم على المجال المجال ومن ثم على المجال ومن ثم على المجال المجال على المجال المجال على المجال المجا

 $\frac{7}{4}$ ذن f(x)=0 و منه المعادلة f(x)=0 نقبل حلا وحيدا f(x)=0

 $x \ge 0$ عند y = f'(0)(x-0) + f(0) عند النقطة (C) عند النقطة (C) عند النقطة (A) عند النقطة (A)

 $x \ge 0$ مع y = x : إذن معادلة (Δ) من الشكل $f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} (1 - x \ln x) = 1$ عيث $f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} (1 - x \ln x) = 1$