التمرين الأول:

$$f(x) = \frac{|x^2 - 3x|}{x+1}$$
: لتكن الدالة العددية f للمتغير الحقيقي x و المعرفة كما يلي

. $(O\ ;\ \overrightarrow{i}\ ;\overrightarrow{j}\)$ للمنحني الممثل للدالة f في مستوي منسوب إلى معلم متعامد و متجانس (C_f) يرمز

- f ما هي مجموعة تعريف الدالة 1
- . أكتب f(x) دون رمز القيمة المطلقة .
- $f(x) = ax + b + \frac{c}{x+1}$ و c و b ، a و 3 بحيث يكون 3.
 - $x_1=3$ و $x_0=0$ ادرس قابلية إشتقاق الدالة f من أجل القيمة .4
 - (C_f) و عين بمعادلاتها المستقيمات المقاربة للمنحنى f
 - (C_f) أرسم بعناية المنحني 6
- f(x)=m وجود و إشارة حلول المعادلة: f(x)=m و حسب قيم الوسيط الحقيقي و m
 - . m=1 من أجل (α) من أجل .8

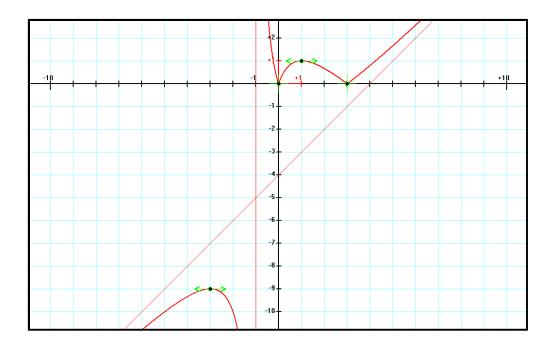
التمرين الثاني:

$$g(x) = \frac{x^2 + x - 2}{|x| - 1}$$
 : دالة عددية للمتغير الحقيقي x المعرفة كمايلي g

 (C_h) يرمز (C_h) للمنحني الممثل للدالة (C_h) في مستوي منسوب إلى معلم متعامد و متجانس

- 1. عين مجموعة تعريف الدالة g .
- ? ماذا نستنتج ، $\lim_{x\to 1} g(x)$ ماذا نستنتج .
- $x_0=0$ عند العدد g عند إشتقاق الدالة g
 - 4 . (C_h) و أرسم (g) .

التهرين الثالث :

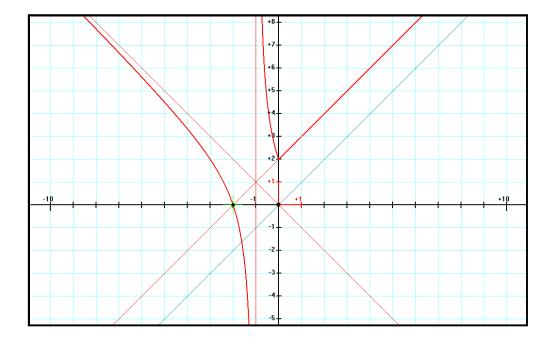

. المعرفة كمايلي \mathbf{x} المعرفة كمايلي \mathbf{x} المعرفة كمايلي البياني \mathbf{x} المعرفة كمايلي البياني \mathbf{h}

. أدرس قابلية إشتقاق الدالة h عند القيمة $x_0 = -2$ ثم إعط التفسير الهندسي للنتيجة المحصل عليها $^{\circ}1$

2° / أدرس تغيرات الدالة h .

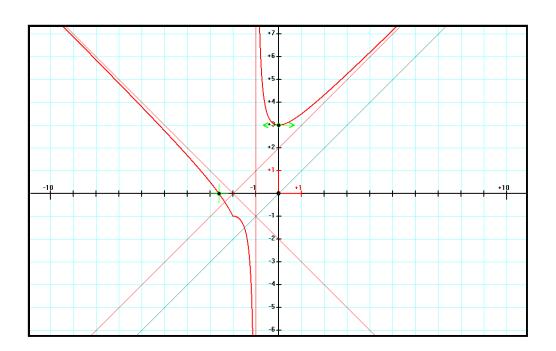
. منهما کل معادله کل معادله کل منهما ((C_h) یطاب معادله کل منهما (C_h) یا بر هن أن

 \cdot (Δ_2) ، (Δ_1) و (C_h) و أرسم (C_h) بالنسبة للمقاربين و أرسم (C_h) و $^\circ 4$



<u>لتمرين الأول:</u>

$$f(x) = \frac{\left|x^2 - 3x\right|}{x + 1}$$


<u>لتمريد الثاني :</u>

$$g(x) = \frac{x^2 + x - 2}{|x| - 1}$$

<u>التمريق الثالث:</u>

$$h(x) = |x+2| + \frac{1}{x+1}$$

