116 125

 $f(x) = \frac{e^x - e^{-x}}{2}$: كما يلي: 1:وقتر الدالة f المعرفة على \mathbb{R} كما يلي: 1

. $(O; \vec{i}, \vec{j})$ الوحدة البياني في معلم متعامد ومتجانس ($(O; \vec{i}, \vec{j})$) الوحدة

(C) ادرس شفعية الدالة f.ماذا تستنتج بالنسبة للمنحني (C)

.[0;+ ∞ [على f عند f عند f على].2

 $.\left(O;\vec{i},\vec{j}
ight)$ المنحني (C) في المعلم المنحني.

الجزء 2: نعتبر النقطة A من المستوي إحداثياتها (1;0)، نهتم بأصغر مسافة A حيث M نقطة من المنحنى (C).

AM فاصلتها x عين بدلالة x المسافة M .1

 $g(x) = (x-1)^2 + \frac{(e^x - e^{-x})^2}{2}$: كما يلي: g كما يلي: g المعرفة على g كما يلي: 2

g'(x) إ

g الدالة المشتقة الثانية للدالة g هي الدالة g حيث g حيث g حيث g

 $g''(x) = e^{2x} + e^{-2x} + 2$:x عدد حقیقی عدد عدد عدد ... •

 \mathbb{R} على \mathbb{R} على \mathbb{R}

[0;1] بين أنه يوجد عدد حقيقي وحيد α من المجال ا

 $0,46 \leq \alpha \leq 0,47$ يحقق ، $g'(\alpha)=0$ يحقق ، $g'(\alpha)=0$

x عين إشارة g'(x) حسب قيم g'(x)

 $\frac{d}{dx}$ الدرس تغيرات الدالة g على \mathbb{R} (لا يطلب حساب النهايات عند ∞ – و عند ∞ +). ما هي القيمة الحدية الصغرى للدالة g على \mathbb{R} ?

. α نقبل أن المسافة ΔM تكون صغرى عند النقطة ΔM من المنحنى (C) التي فاصلتها . ΔM

مثل النقطة M_{α} في الشكل.

 $g(\alpha) = \frac{1}{4} \left[f(2\alpha) \right]^2 + \left[f(\alpha) \right]^2$ شم $\alpha - 1 = -\frac{1}{2} f(2\alpha)$:باستعمال تعریف α بین أن

. 2×10^{-2} استنج حصرا للمسافة AM_{α} استنج حصرا للمسافة $g(\alpha)$ استنج مل تغيرات f