الجمهورية الجزائرية الديمقراطية الشعبية

مديرية التربية لولاية سكيكدة متقن المجاهد محمد الصالح غميرد-القل وزارة التربية الوطنية

امتحان بكالوريا تجريبية للتعليم الثانوي

الشعبة: تقني رياضي

دورة: ماي 2017 المدة: **04** ساعات ونصف

اختبار في مادة: الرياضيات

على كل مترشح أن يعالج موضوعا واحدا على الخيار

الموضوع الأول

التمرين الأول: (04 نقاط)

الفضاء منسوب إلى معلم متعامد ومتجانس ($D; \vec{i}; \vec{j}; \vec{k}$). نعتبر النقطتين: B(3;1;2) و المستوي

$$x + y - 2z = 0$$
 : الذي يشمل B و (p') شعاع ناظمي له، والمستوي $n(3;2;-5)$ ذا المعادلة (p')

- أ) أكتب تمثيلا وسيطيا للمستقيم (d) الذي يشمل B و (1;1;1) شعاع توجيه له.
 - (d) و المستويين ((p')) متقاطعان و فق المستقيم ((p')).
 - ج) أثبت أنّ B هي المسقط العمودي للنقطة A على (p).

$$\begin{cases} x=t-2m+2 \ y=t+3m+2; & (t\,;m\,)\in\mathbb{R}^2 \end{cases}$$
ليكن المستوي (q) المعرّف بالتمثيل الوسيطي: $(z=t-2)$

أ-عيّن شعاعي توجيه للمستوي (q)، ثمّ بيّن أنّ المستويين (p) و (p) متوازيان. ب-تحقق أنّ المستوي (q) يقبل معادلة تكافئ: (q) وتحقق أنّ (q) تتمي إلى المستوي (q) واستنتج ماذا يمثل ج-عيّن إحداثيات النقطة (q) منتصف القطعة (q)، وتحقق أنّ (q) تتمي إلى المستوي (q) واستنتج ماذا يمثل المستوى (q) بالنسبة للقطعة (q).

MA.MB = 0 نعتبر (s) مجموعة النقط Mمن الفضاء بحيث: Ω ونصف قطره r. أ-بيّن أنّ (s) هي سطح كرة ثمّ عين إحداثيات مركزه Ω ونصف قطره r. ب-أدرس الوضع النسبي للمستوي (q) وسطح الكرة (s).

التمرين الثاني: (04 نقاط)

- 1) أ) ادر س حسب قيم العدد الطبيعي n بواقي القسمة الاقليدية للعدد n على 7.
 - .7 بيّن أنّ العدد: $2 2017^{1438} 2$ يقبل القسمة على 7.
- 23. عين قيّم العدد الطبيعي n حتى يكون العدد: $1438^{6n+5} 2017^{6n+3} + 15n^2 + 15n^2$ عين قيّم العدد الطبيعي العدد (3
 - $(4n+3) \times 3^{6n+2} + 4^{6n+1} \equiv 0$ [7] عيّن قيّم العدد الطبيعي n حتى يكون العدد (4

التمرين الثالث: (05 نقاط)

 $(z + \sqrt{3} - 1)(z^2 - 2\sqrt{3}z + 4) = 0$ المعادلة: (*) المعادلة: المركبة المركبة المركبة المعادلة: المركبة المركبة المعادلة: المركبة المركبة المعادلة: المركبة المركبة المركبة المركبة المعادلة: المركبة المعادلة: المركبة المعادلة: المركبة المعادلة: المركبة المر

- دل في \mathbb{C} المعادلة (*).
- 2) في المستوي المركب المنسوب إلى معلم متعامد ومتجانس $(O;\vec{u};\vec{v})$. نعتبر النقطة A صورة العدد الحقيقي $z_C=\overline{z}_B$ و $z_B=\sqrt{3}+i$ و النقطتين $z_C=\overline{z}_B$ و النقطتين $z_A=\sqrt{3}-1$

- Aو C، B :فنشئ هندسيا النقط z_C و z_B ، z_B و كا النقط الأسي كل من الأعداد الأعدا
 - ب) عين قيم العدد n الطبيعية حتى يكون أعين قيم العدد n
 - ج) عيّن قيم العدد n الطبيعية حتى يكون $(z_B)^n$ تخيليا صرفا.

$$\left(\frac{z_B}{2}\right)^{2017} - \left(\frac{z_B}{2}\right)^{1439} \quad (2)$$

- .ABC على الشكل الجبري ثمّ على الشكل الأسي. واستنتج طبيعة المثلث (3
- 4) ليكن الدوران f الذي مركزه A ويحوّل C إلى B. عيّن زاوية الدوران وأكتب عبارته المركبة.
 - لتكن النقطة B' صورة B بالدوران f، بيّن أنّ B' هي صورة C بتناظر يطلب تعيينه.
 - انشئها. B' لاحقة B' انشئها.

التمرين الرابع: (07 نقاط)

$$f(x) = x - \frac{4e^x}{e^x + 1}$$
:نعتبر الدالة f المعرّفة على \mathbb{R} كما يلي

- 1cm المنحنى الممثل L_f في معلم متعامد ومتجانس، وحدة الطول (C)
 - $\lim_{x \to +\infty} f(x) \quad : \lim_{x \to \infty} f(x) : (1)$
- . \mathbb{R} على \mathbb{R} واستنتج أنّ الدالة f متز ايدة تماما على \mathbb{R} . وشكل جدول تغير ات f على f (2
- (3) أ) بين أنّه من أجل كل عدد حقيقي x فإنّ: $\frac{1}{1+e^{-x}}$ فإنّ: $f(x) = x 4 + \frac{1}{1+e^{-x}}$
 - .(Δ) مقارب مائل للمنحنى (Δ) عند ∞ + ثمّ أدرس وضعية (Δ) بالنسبة للمستقيم (Δ).
 - ب) بيّن أنّ المستقيم (' Δ) ذا المعادلة: y=x مقارب مائل عند ∞ ثمّ أدرس وضعية (Δ) بالنسبة (Δ).
 - (4) أكتب معادلة للمماس (7) للمنحنى (6) في النقطة ذات الفاصلة (6)
 - ب) بیّن 4-f(x)+f(-x)=-4، ماذا تستنتج؟
 - (C)بيّن أنّ $\Omega(0;-2)$ نقطة انعطاف للمنحنى
 - $3.9 \le \alpha \le 4$: حيث أنّ المعادلة: f(x) = 0 تقبل حلا وحيدا
 - (C) أرسم المستقيمين المقاربين (Δ) ، (Δ) ، المماس (Δ) والمنحنى (Δ).
 - . \mathbb{R} على $x\mapsto \frac{e^x}{e^x+1}$ على الدالة أصلية الدالة أصلية (6
- ب) أحسب بالسنتمتر المربع، المساحة A للحيز المستوي المحدّد بالمنحنى (C) والمستقيم (Δ) والمستقيمين الذين معادلتيهما: x=0 و x=0 . ثمّ عيّن مدوّر x=0 إلى x=0
 - $g(x) = |x| \frac{4e^{|x|}}{e^{|x|} + 1}$ نعرّف على \mathbb{R} الدالة g كما يلي: (7
 - (C) انطلاقا من (C_g) انطلاقا من أنّ و زوجية وأرسم
 - g(x) = m عدد وإشارة حلول المعادلة: m عدد وإشارة حلول المعادلة:

انتهى الموضوع الأول

الصفحة 2 من 4

الموضوع الثاني

التمرين الأول: (05 نقاط)

.
$$z_{C}$$
 و z_{B} ، z_{A} الأعداد: z_{C} و z_{B} و .

$$(z_B^{7}-z_C^{7})+(z_B^{1438}-z_C^{1438})$$
 : ب) أكتب على الشكل الجبري العدد

$$(z_B - z_C) + (z_B - z_C)$$

ج) بيّن أِنّ النقط:
$$A$$
، B و C تنتمي إلى دائرة مركزها O يطلب تعيين نصف قطرها

$$z$$
 'اللحقة اللحقة M ذات اللحقة الخويل M ذات اللحقة المحقة M ذات اللحقة الحقة الحق

أ) بين أنّ
$$A$$
 صامدة بالتحويل S ، ثمّ عين طبيعة التحويل S و عناصر ه المميزة.

$$O'=S(O)$$
 و $C'=S(C)$ ، $B'=S(B)$ حيث: $O'C'AB'$ و ومساحة الرباعي با ماهي طبيعة ومساحة الرباعي

التمرين الثاني: (04 نقاط)

B(-3;1;2) ، A(2;-1;3) ، $\Omega(2;2;3)$: نعتبر النقط: $O(\vec{i};\vec{j};\vec{k})$ معلم متعامد ومتجانس $O(\vec{i};\vec{j};\vec{k})$ نعتبر النقط: O(1;-2;0) و O(1;-2;0)

- (1) أ) بيّن أنّ النقط A، B، وC تعين مستويا نرمز له mathred (p) أ) بيّن أن الشعاع mathred (1;2;-1) ناظمی للمستوی mathred (p) تم استنتج معادلة لـmathred (p).
 - ر (p) أحسب المسافة بيّن Ω و Ω
- (p) عيّن معادلة لسطح الكرة (s) التي مركز ها Ω وتمسّ المستوي $\vec{u}(3;2;-3)$ نعتبر المستقيم (Δ) الذي يشمل E(-2;-1;8) والموجه بالشعاع (3)
 - (2-2;-1;8) الذي يسمل (Δ) الذي يسمل (Δ) عين بدلالة الوسيط الحقيقى t تمثيلا وسيطيا للمستقيم (Δ).
 - $\overrightarrow{\Omega M}$ با نقطة من المستقيم (Δ) ، عيّن بدلالة t مركبات الشعاع M
 - (Δ) أحسب المسافة بين النقطة Ω والمستقيم
 - 4) عين إحداثيات نقطتي تقاطع المستقيم (Δ) والسطح (s).

التمرين الثالث: (04 نقاط)

 $f(x) = \frac{8x-3}{2x+1}$: كما يلي: $\left[\frac{3}{8}; +\infty\right]$ كما يلي: المستوي منسوب إلى معلم متعامد ومتجانس. $f(x) = \frac{8x-3}{2x+1}$ كما يلي: (1)

تمثيلها البياني و (Δ) المستقيم ذو المعادلة y=xكما هو مبين في الشكل أدناه. \mathbf{C}_f

$$0 \le f(x) < 4$$
 فإنّ: $4 < \frac{3}{8}$ فإنّ: $4 < f$ فانّ: $4 < f$ فانّ: $4 < f$ فانّ: $4 < f$

ب) عيّن العددين الحقيقين α و β حيث $(\alpha > \beta)$ ، حلّي المعادلة: f(x) = x والمستقيم قاطع C_f والمستقيم C_f عيّن بيانيا وضعية C_f وضعية C_f و C_f و المستقيم عادلته C_f معادلته C_f عيّن بيانيا وضعية C_f و C_f

$$\begin{cases} v_0 = 5 \\ v_{n+1} = f(v_n) \end{cases} \quad \begin{cases} u_0 = 1 \\ u_{n+1} = f(u_n) \end{cases}$$
 كما يلي: (2^n) عنبر المتتاليتين (u_n) عنبر المتتاليتين (u_n) عنبر المتتاليتين (2

 v_2 و v_1 , v_0 و الحدود: u_2 و u_2 ، u_1 ، u_0 و العدود: u_3 و الحدود: u_3

 (v_n) و (u_n) و فقارب كل من المتتاليتين: (u_n)

 $3 < v_n \le 5$ و $1 \le u_n < 3$: من أجل كل عدد طبيعي (3) أثبت بالتراجع أنّه من أجل كل عدد طبيعي (3)

 (v_n) و (u_n) عين اتجاه تغير كل من المتتاليتين

4) أ) أثبت أنّه من أجل كل عدد طبيعي n:

$$v_{n+1} - u_{n+1} = \frac{14}{(2v_n + 1)(2u_n + 1)} \times (v_n - u_n)$$

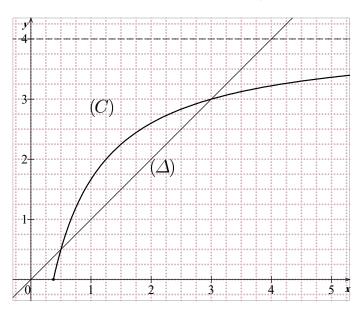
واستنتج أنّه من أجل كل عدد طبيعي n:

$$0 < v_{n+1} - u_{n+1} < \frac{2}{3} (v_n - u_n)$$

ب) بيّن أنّه من أجل كل عدد طبيعي n:

$$0 < v_n - u_n < 4 \times \left(\frac{2}{3}\right)^n$$

 $\lim_{n\to+\infty}v_n-u_n=0$ استنتج أنّ: $\lim_{n\to+\infty}v_n-u_n=0$ وأستنتج النهاية المشتركة للمتتاليتين (u_n) و (v_n) .



التمرين الرابع: (07 نقاط)

(O;I;J) الدالة f معرّفة على $]0;+\infty[$ كما يلي: $f(x) = \frac{x-1}{x} + \ln x$ ورك تمثيلها البياني في معلم متعامد ومتجانس

النتيجة. $\lim_{x \to +\infty} f(x)$ ، $\lim_{x \to +\infty} f(x)$ وفسر النتيجة.

المجال f'(x) أحسب f'(x) وأستنتج أنّ f متزايدة تماما على المجال f'(x) ، ثمّ شكل جدول تغيراتها.

(3) أ) عيّن معادلة المماس (T) للمنحنى (C) عند النقطة ذات الفاصلة 1. (g(x)=f(x)-(2x-2) ب) أدر س تغير ات الدالة g المعرّفة على g(x)=f(x)-(2x-2) ب) أدر س تغير ات الدالة g

g(x) على المجال g(x) على المجال g(x) على المجال g(x)

د) استنتج الوضعية النسبية للمنحنى (C) والمماس (T).

(C) أرسم المماس (T) والمنحنى (5).

 $f\left(x\right) = 2x + k$ ناقش بيانيا حسب قيم العدد الحقيقي k عدد حلول المعادلة: $\left(6\right)$

(7) أ) بيّن أنّ الدالة: $x\mapsto x.\ln x-x$ هي دالة أصلية للدالة $x\mapsto x.\ln x-x$ على المجال (7) من أن الدالة: (7) مساحة الحيز المستوي المحدّد بالمنحنى (7)، محور الفواصل و المستقيمين اللذين معادلتيهما: (7) على (7) على المستقيمين اللذين (7) معادلتيهما: (7) على (7) على المستويمين اللذين المعرّفة في السؤال (7).

ج) عين حصر اللعدد A.

بالتوفيق

المدة: 04 ساعات ونصف

تصحيح الموضوع الأول

التمرين الأول: (04 نقاط)

اختبار في مادة: الرياضيات

B الذي يشمل B والمستوي B الذي يشمل B والمستوي B (3;1;2) والمستوي B الذي يشمل B والمستوي B المعادلة: B والمستوي B الذي يشمل B المعادلة: B والمستوي B الذي يشمل B والمستوي B المعادلة: B ال

$$(d): \begin{cases} x = t+3 \\ y = t+1; & t \in \mathbb{R} \end{cases}$$
 شعاع توجيه له. الحلي: $u(1;1;1)$ شعاع توجيه له. الحلي: $u(1;1;1)$ أكتب تمثيلا وسيطيا للمستقيم $u(1;1;1)$ الذي يشمل $u(1;1;1)$ شعاع $u(1;1;1)$

3x + 2y - 5z - 1 = 0 (p) و (p') متقاطعان وفق المستقيم (d). الحل: تنتج معادلة للمستويين (p) و (p') متقاطعان وفق (d) متقاطعان وفق (d).

$$d\left(A;p\right) = \frac{\left|18+6+15-1\right|}{\sqrt{9+4+25}} = \sqrt{38} = \left|\overline{AB}\right| = \sqrt{9+4+25} \quad \text{if it is in the proof of the pr$$

 $\vec{v}(2;3;0)$ أ-عيّن شعاعي توجيه للمستوي (q)، ثمّ بيّن أنّ المستويين (q) و(p) متوازيان. <u>الحل:</u> شعاعا توجيه (q): (q): (q) و (q): (q)

ب-تحقق أنّ المستوي (q) يقبل معادلة تكافئ: 3x + 2y - 5z = 20 3x + 2y - 5z = 20 بالتعويض من التمثيل الوسيطي لـ (q) في المعادلة كما يلى: (q) يقبل معادلة تكافئ: (q) عادلة كما يلى: (q) عادلة تكافئ: (q) عادلت ت

تي. 20 كن المستوي على المستوي على المستوي على المستوي (q) واستنتج ماذا يمثل المستوي (q) بالنسبة جعيّن إحداثيات النقطة E منتصف القطعة [E]، وتحقق أنّ E تنتمي إلى المستوي (q) واستنتج ماذا يمثل المستوي (q) بالنسبة للقطعة [E]. المحل: E (E) وهذه الاحداثيات تحقق معادلة (E) ومنه: (E) ومنه E (E) ومنه المحداثيات تحقق معادلة (E) ومنه المحداثين المحداثين المحداثيات تحقق معادلة (E) ومنه المحداثيات تحقق معادلة (E) ومنه المحداثين المحداثين

(q) مستوي محوري لـ [AB].

 $\overline{MA}.\overline{MB}=0$ نُعْتَبر (s) مُجموعة النقط Mمن الفضاء بحيث: (s) مُجموعة النقط s ونصف قطره s.

ومنه: (AB] منتصف (AB] ومنه: الحل: من تعریف سطح کرة فإن (AB] منتصف (AB] ومنه:

$$r=rac{\sqrt{8\,6}}{4}$$
 ونصف قطرها: $r=rac{A\,B}{2}$ ونصف $(E$ هي $\Omega)$ $\Omega=E\left(rac{9}{2};2;rac{-1}{2}
ight)$

ب-أدرس الوضع النسبي للمستوي (q) وسطح الكرة (s). <u>الحل:</u> (q) مستوي محوري لـ(AB]، وسطح الكرة (s) قطره (g) قطره (g) ينتج: (g) و (g) متقاطعان في دائرة قطرها الطول (g) الطول (g) مستوي قطري لـ(g)).

التمرين الثاني: (04 نقاط)

ما العدد n على 7. أي أدر س حسب قيم العدد الطبيعي n بواقي القسمة الاقليدية للعدد n على 7.

n	=	6k	6 <i>k</i> +1	6k+2	6k+3	6k+4	6k+5		الحل:
3	$B^n \equiv$	1	3	2	6	4	5	[7]	<u> </u>

- 2) بيّن أنّ العدد: $2 2017^{1438} 2 = 1438^{2017} 2017^{1438}$ يقبل القسمة على 7. <u>الحل:</u> نفرض العدد المعطى هو $A_n = 0$ العين أنّ العدد: $A_n = 0$ ومنه: $A_n = 0$ وم
- 3) عين قيّم العدد الطبيعي n حتى يكون العدد: $1+2n^2+1$ $1+3n^3+1$ $1+3n^3+1$ يقبل القسمة على 7. <u>الحل:</u> نفرض العدد المعطى هو n لدينا: n = 0 يكافئ: n = 0 يكافئ:

$$C_n$$
 عيّن قيّم العدد الطبيعي n حتى يكون: $[7] = 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ عيّن قيّم العدد الطبيعي n عيّن قيّم العدد المعطى هو n عين قيّم العدد المعطى n عين قيّم العدد المعطى n عين قيّم العدد المعطى n ومنه: n ومنه: n $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ ومنه: n $= 0$ $=$

التمرين الثالث: (05 نقاط)

 $(z-\sqrt{3}+1)(z^2-2\sqrt{3}z^2+4)=0$ نعتبر في مجموعة الاعداد المركبة $\mathbb C$ المعادلة: (*)

$$z_2 = \sqrt{3} - i$$
 ، $z_1 = \sqrt{3} + i$ ، $\Delta = -4 = (2i)^2$ ، $z_0 = \sqrt{3} - 1$. (*) المعادلة (*). الحلاء (1)

$$z_A = \sqrt{3} - 1$$
 في المستوي المركب المنسوب إلى معلم متعامد ومتجانس $(O; \vec{u}; \vec{v})$. نعتبر النقطة A صورة العدد الحقيقي (2) و النقطتين $z_C = \vec{z}_B$ و $z_B = \sqrt{3} + i$

$$A$$
 و C ، B : فتب على الشكل الأسي كل من الأعداد: z_B ، z_B و z_B ؛ ثمّ أنشئ هندسيا النقط: $z_B = 2e^{i\pi/6}$ ، $z_A = (\sqrt{3}-1)e^{i0}$ الإنشاء أنظر الرسم الحل: $z_B = 2e^{i\pi/6}$ ، $z_A = (\sqrt{3}-1)e^{i0}$

$$k\in\mathbb{N}$$
 و $n=6$ و $n=6$ و يكافئ: $n=6$ يكون $n=6$ و يكافئ: $n=6$ و $n=6$ يكافئ: $n=6$ و $n=6$

$$n \cdot \frac{\pi}{6} = \frac{\pi}{2} + k \pi$$
 يكافئ: $\arg(z_B^n) \equiv \frac{\pi}{2} [\pi] \frac{\pi}{2}$ عيّن قيم العدد n الطبيعية حتى يكون $(z_B^n)^n$ تخيليا صرفا. الحل:

$$k \in \mathbb{N} \text{ if } n = 6k + 3 \text{ is } n = 3.\pi + 6k \pi \text{ explained by } n = 3.\pi + 6k \pi \text{ explained by } n = 3.\pi + 6k \pi \text{ explained by } n = 4 + 6k \pi \text{ explained by } n = 4 + 6k \pi \text{ explained by } n = 4 + 6k \pi \text{ explained by } n = 4 + 6k \pi \text{ explained by } n = 4 + 6k \pi \text{ explained by } n = 4 + 6k \pi \text{ explained by } n = 4k \pi \text{ explained$$

. ABC على الشكل الجبري ثمّ على الشكل الجبري ثمّ على الشكل الأسي. واستنتج طبيعة المثلث $\frac{z_B - z_A}{z_G - z_A}$

$$\frac{z_B - z_A}{z_C - z_A} = e^{i\frac{\pi}{2}}$$
ومنه:
$$\frac{z_B - z_A}{z_C - z_A} = \frac{\sqrt{3} + i - \sqrt{3} + 1}{\sqrt{3} + i - \sqrt{3} + 1} = \frac{1 + i}{1 - i} = i$$

طبيعة المثلث ABC: لدينا ABC = AB و $\frac{\pi}{2} = AC = AB$ و منه: ABC قائم متساوي الساقين.

4) ليكن الدوران f الذي مركزه A ويحوّل C إلى B. عيّن زاوية الدوران وأكتب عبارته المركبة.

الحل: من السؤال 3) تنتج زاوية الدوران $\frac{\pi}{2}$ والعبارة هي: $(z-z_A)=e^{i\frac{\pi}{2}}(z-z_A)$ وتكافئ:

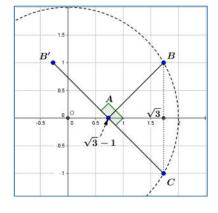
$$z' - \sqrt{3} + 1 = i(z - \sqrt{3} + 1)$$

لتكن النقطة B' صورة B بالدوران f، بيّن أنّ B' هي صورة B' بتناظر يطلب

الحل: لدينا: B = f(C) و الحل: B = f(C) و الحل: ا مركب دورانين هي مجموع زاويتي كل من الدورانين وعليه:

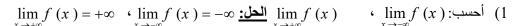
$$A$$
 اِذن B' هي صورة C بتناظر مركزه A اإذن A هي صورة A بتناظر مركزه A

 z_{B} , $-\sqrt{3}+1=i$ ($z_{B}-\sqrt{3}+1$) أحسب , z_{B} ثمّ أنشئها. الحل z_{B} $z_{_{B}}$, = $\sqrt{3}-2+i$ یکافئ: $z_{_{B}}$, = i $(\sqrt{3}+i-\sqrt{3}+1)+\sqrt{3}-1$ وینتج:



التمرين الرابع: (07 نقاط)

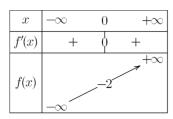
1cm نعتبر الدالة f المعرّفة على \mathbb{R} كما يلي:(C) كما يلي: $f(x) = x - \frac{4e^x}{e^x + 1}$ المنحنى الممثل لأو معلم متعامد ومتجانس، وحدة الطول



 \mathbb{R} على \mathbb{R} . وشكل جدول تغيرات f على الدالة f متزايدة تماما على الدالة f الدالة أن الدالة أن

$$x \neq 0$$
 ($x \neq 0$) الحل: $x = 0$ ($x \neq 0$) الحل: $x = 0$ ($x \neq 0$) المحل: $x \neq 0$ ($x \neq 0$) الم

إذن: من أجل كل عدد حقيقي x فإنّ الدالة f متز ايدة تماما. جدول التغيرات:



أ) بين أنّه من أجل كل عدد حقيقي x فإنّ: $\frac{4}{1+e^x}+4+(x)=f$ واستنتج أنّ المستقيم	(3
(C) ذا المعادلة: $y=x-4$ مقارب مائل للمنحنى (C) عند $\infty+$ ثمّ أدرس وضعية (Δ)	
بالنسبة للمستقيم (Δ) .	

$$f(x) = x - \frac{4e^x}{e^x + 1} = x - 4\frac{(e^x + 1) - 1}{e^x + 1} = x - 4 + \frac{4}{e^x + 1}$$

$$\lim_{x\to +\infty} f(x) - (x-4) = \lim_{x\to +\infty} \frac{4}{e^x+1} = 0$$
 الدينا: (Δ) لدينا:

$$x \in \mathbb{R}$$
 من أجل $\frac{(\Delta)}{e^x + 1}$ من أجل $\frac{(\Delta)}{e^x + 1} = \frac{4}{e^x + 1} > 0$ من أجل $\frac{(\Delta)}{e^x + 1} = \frac{1}{2}$ مقارب مائل عند $\frac{(\Delta)}{e^x + 1} = \frac{1}{2}$ مقارب مائل عند $\frac{(\Delta)}{e^x + 1} = \frac{1}{2}$ مقارب مائل عند $\frac{(\Delta)}{e^x + 1} = \frac{1}{2}$

$$\lim_{x \to -\infty} f(x) - x = \lim_{x \to -\infty} \frac{-4e^x}{e^x + 1} = 0$$
 ادينا: (Δ') لدينا:

$$x \in \mathbb{R}$$
 من أجل (α) من أجل $f(x) - x = \frac{-4e^x}{e^x + 1} < 0$ الدينا: (α) وللمستقيم (α) وللمستقيم (α) لدينا: (α) لدينا: (α) من أجل

$$f(x) + f(-x) = x - \frac{4e^{x}}{e^{x} + 1} - x - \frac{4e^{-x}}{e^{-x} + 1} = -\frac{4e^{x}}{e^{x} + 1} - \frac{4}{1 + e^{x}} = \frac{-4(e^{x} + 1)}{e^{x} + 1} = -4\frac{1}{1 + e^{x}} = -$$

(C) بين أنّ (0; -2) نقطة انعطاف للمنحنى (C).

$$d(x) = f(x) - (-2) = 2 - \frac{4e^x}{e^x + 1} = \frac{-2(e^x - 1)}{e^x + 1}$$
: الحل: ندرس وضعية المماس (T) والمنحنى (T) لدينا:

x<1 یکافئ: d(x)>0 و d(x)>0 یکافئ: x>1 یکافئ: x>0 یکافئ: x

الخلاصة: المماس (T) يخترق البيان في النقطة ذات الفاصلة 0 ومنه $\Omega(0;-2)$ نقطة انعطاف.

f''(x) ملاحظة طريقة أخرى-: يمكن دراسة إشارة المشتقة الثانية

$$3.9 \leq lpha \leq 4$$
 : حيث أنّ المعادلة: $(x) = 0$ تقبل حلا وحيدا α

5) أرسم المستقيمين المقاربين (Δ) ، (Δ) ، المماس (T) والمنحنى (D). أنظر الرسم أدناه

.
$$\mathbb{R}$$
 على عين دالة أصلية للدالة $\frac{e^{-x}}{e^{-x}+1}$ على (6) (6)

$$\int \frac{e^{x}}{e^{x}+1} dx = \int \frac{u'}{u} dx = \ln |u| = \ln (e^{x}+1)$$

ب) أحسب بالسنتمتر المربع، المساحة A للحيز المستوي المحدّد بالمنحنى $\binom{c}{C}$ والمستقيمين الذين معادلتيهما: (C) عين مدوّر A إلى (C) المستوي المحدّد بالمنحنى (C) والمستقيمين الذين معادلتيهما: (C) عين مدوّر (C) المستوي المحدّد بالمنحنى (C) والمستقيمين الذين معادلتيهما: (C) عين مدوّر (C) المستوي المحدّد بالمنحنى (C) والمستقيمين الذين معادلتيهما: (C)

$$A = \int_{0}^{4} f(x) - (x - 4) dx = \int_{0}^{4} -4 \frac{e^{x}}{e^{x} + 1} + 4 dx = 4x - 4 \ln(e^{x} + 1) \Big|_{0}^{4}$$

 $A = 2.70 \text{ cm}^2$: $A = 16 - 4 \ln(e^4 + 1) + 4 \ln(2) \text{ cm}^2$ ومنه:

$$g(x) = |x| - \frac{4 e^{|x|}}{e^{|x|} + 1}$$
 نعرّف على \mathbb{R} الدالة g كما يلي: (7

(C) انطلاقا من (C_g) انطلاقا من أنّ (C_g) انطلاقا من أنّ

 $g(-x) = |-x| - \frac{4e^{|-x|}}{e^{|-x|} + 1} = |x| - \frac{4e^{|x|}}{e^{|x|} + 1} = g(x)$ ومنه: $g(-x) = |x| - \frac{4e^{|-x|}}{e^{|-x|} + 1}$ ومنه: g(-x) = |x|

رسم g لانّ g زوجية فإنّ تمثيلها البياني متناظر بالنسبة لمحور التراتيب.

عندما (Cg) عندما (x) = f(x) منطبق على |x| = x

وعندما x < 0 نرسم الجزء الآخر من (Cg) بالتناظر بالنسبة لمحور التراتيب. أنظر الرسم

g(x) = m ناقش بيانيا حسب قيم الوسيط الحقيقي m عدد وإشارة حلول المعادلة:

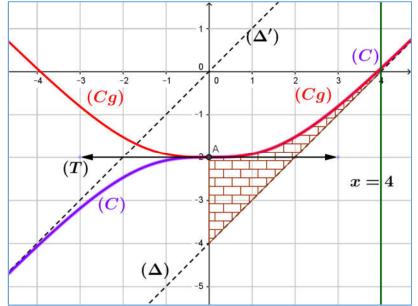
الحل: حلول هذه المعادلة هي فواصل نقط تقاطع البيان (Cg) مع المستقيم ذي المعادلة y=m الموازي لمحور الغواصل.

المناقشة:

عندما m < -2 عندما m < -2

عندما m=-2 يوجد حل مضاعف معدوم.

وعندما 2-2 یوجد حلان متعاکسان.



انتهى تصحيح الموضوع الأول بالتوفيق

تصحيح الموضوع الثاني

التمرين الأول: (05 نقاط)

$$z_{B}=2\left(\cos\frac{\pi}{3}-i\sin\frac{\pi}{3}\right)=2e^{-i\pi/3}$$
 و $z_{B}=2\left(\cos\frac{\pi}{3}+i\sin\frac{\pi}{3}\right)=2e^{i\pi/3}$ و $z_{B}=2\left(\cos\frac{\pi}{3}+i\sin\frac{\pi}{3}\right)=2e^{i\pi/3}$ ب اكتب على الشكل الجبري العدد: $z_{B}=z_{A}$

$$t=(z_{B}^{7}-z_{C}^{7})+(z_{B}^{1438}-z_{C}^{1438})$$
: ب) أكتب على الشكل الجبري العدد: ($z_{B}^{7}-z_{C}^{7}=\overline{z_{B}^{7}}; z_{C}^{1438}=\overline{z_{B}^{1438}}; z_{C}=\overline{z_{B}}$ ومنه:

$$\begin{bmatrix} z_B^{7} - z_C^{7} = 2^7 \times 2i \sin\left(7\frac{\pi}{3}\right) = 2^7 \times 2i \sin\frac{\pi}{3} = 2^7 \times 2i \frac{\sqrt{3}}{2} = 2^7 \times i \sqrt{3} \\ z_B^{1438} - z_C^{1438} = 2^{1438} \times 2i \sin\left(1438\frac{\pi}{3}\right) = -2^{1438} \times 2i \sin\frac{\pi}{3} = -2^{1438} \times 2i \frac{\sqrt{3}}{2} = -2^{1438}i \sqrt{3} \end{bmatrix}$$

$$t = (2^8 - 2^{1438}) \times i \sqrt{3}$$
 وعليه:

ج) بيّن أنّ النقط: A، B وC تنتمى إلى دائرة مركز ها C يطلب تعيين نصف قطر ها

الحل: لدينا: $|z_A| = |z_B| = |z_B|$ ومنه: $|z_A| = |z_B| = |z_C|$ إذن الدائرة قطرها 2

 $\overrightarrow{OA}.\overrightarrow{CB}=0$ و $\overrightarrow{OC}=\overrightarrow{BA}=(1;-\sqrt{3})$ د) أثبت أنّ الرباعي $\overrightarrow{OC}=OCAB$ معيّن وأحسب مساحته. الحل:

$$\Delta = 4 \times 1 \times \sqrt{3} / 2 = 2\sqrt{3}u .a : \frac{1}{2}$$

z'=(1-i)z+2i الذي يرفق بالنقطة M ذات اللاحقة Z النقطة M' ذات اللاحقة Z حيث: Z حيث A خات اللاحقة Z النحويل Z، ثمّ عين طبيعة التحويل Z و عناصره المميزة.

$$k = |a| = |1-i| = \sqrt{2}$$
 النقطة الصامدة لاحقتها: $z_0 = \frac{b}{1-a} = \frac{2i}{1-(1-i)} = 2 = z_A$ النقطة الصامدة لاحقتها: $\theta = \frac{-\pi}{4}$ ومنه: $k = \sqrt{2}$ نسبته $k = \sqrt{2}$ نسبته

 $\Delta' = \sqrt{2}^2 \times \Delta = 4\sqrt{3}u$. هعيّن و مساحته: O'C'AB' التشابه يحافظ على الزوايا الموجهة و نسبة الأطوال فإنّ

التمرين الثاني: (04 نقاط)

C(1;-2;0) و B(-3;1;2) ، A(2;-1;3) ، $\Omega(2;2;3)$ نعتبر النقط: $O(1;\overline{i};\overline{j};\overline{k})$ و B(-3;1;2) ، O(2;2;3) الفضاء منسوب إلى معلم متعامد ومتجانس

$$(p)$$
 أ) بيّن أنّ النقط A ، B ، و C تعين مُستويا نرمز له (1)

(p) و تعين مستويا ((-5;2;-1) و (-5;2;-1) و (-5;2;-1) و (-5;2;-1) و (-5;2;-1) و (-5;2;-1)

ب) بيّن أن الشعاع $\vec{n}(1;2;-1)$ ناظمي للمستوي (p) تم استنتج معادلة لـ(p).

$$\vec{n}.\vec{A}\vec{C} = -1 - 2 + 3 = 0$$
 و $\vec{n}.\vec{A}\vec{B} = -5 + 4 + 1 = 0$ الحل: الدينا:

(p): x+2y-z+3=0 ينتج: (p): x+2y-z+d=0 ينتج: (p): x+2y-z+d=0 ينتج: (p): x+2y-z+d=0

$$d\left(\Omega;p\right) = \frac{\left|2+4-3+3\right|}{\sqrt{1+4+1}} = \sqrt{6} \ \ \frac{|\Delta|}{\sqrt{1+4+1}} = \sqrt{6} \ \ \frac{|\Delta|}{\sqrt{$$

ب) عيّن معادلة لسطح الكرة (s) التي مركز ها Ω وتمسّ المستوي (p).

$$(x-2)^2 + (y-2)^2 + (z-3)^2 = 6$$
 الحل:

 $\vec{u}(3;2;-3)$ نعتبر المستقيم (Δ) الذي يشمل (E(-2;-1;8) والموجه بالشعاع (3

$$(\Delta): \begin{cases} x = 3t - 2 \\ y = 2t - 1; & t \in \mathbb{R} \end{cases}$$
 المستقيم (Δ). الحقيقي t تمثيلا وسيطيا للمستقيم (Δ). $t \in \mathbb{R}$ المستقيم $t \in \mathbb{R}$ المستقيم $t \in \mathbb{R}$ المستقيم $t \in \mathbb{R}$ المستقيم (Δ).

$$\overline{\Omega M}$$
 (3t - 4; 2t - 3; -3t + 5) المستقيم (Δ)، عيّن بدلالة t مركبات الشعاع $\overline{\Omega M}$ المعادلة $\overline{\Omega M}$ (Δ)، عيّن بدلالة Δ مركبات الشعاع Δ). الحل: أو لا: نحل المعادلة $\overline{\Omega M}$ تكافئ:

نجد:
$$t=t_0$$
 من أجل $\overline{\Omega M}_0$ من أجل $\overline{\Omega M}_0$ من أجل $t=t_0$ فنجد: $t=t_0$ من أجل 0 عنجد: غنجد: عبين مركبتي الشعاع 0 من أجل 0 فنجد:

$$d\;(\Omega\;;\Delta\;) = \left\| \overline{\Omega\,M}_{\;\;0} \right\| = \frac{1}{1\;1} \sqrt{1\;9^{\;2}\;+\;9^{\;2}\;+\;8^{\;2}} = \frac{\sqrt{2\;0\;5}}{1\;1} \approx \;2\;.04\;$$

د) عين إحداثيات نقطتي تقاطع المستقيم (Δ) والسطح (s).

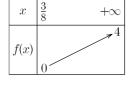
 $22t^2 - 66t + 44 = 0$: نجد: $(3t - 4)^2 + (2t - 3)^2 + (-3t + 5)^2 = 6$: نجد: (s) نجد: (s) نجد: (Δ) نعوض في معادلة (Δ) نجد: (Δ) نجد: (Δ) نجد: (Δ) نجد: (Δ) و (Δ)

التمرين الثالث: (04) نقاط)

$$f(x) = \frac{8x-3}{2x+1}$$
 كما يلي: $\left[\frac{3}{8}; +\infty\right]$ كما يلي: المستوي منسوب إلى معلم متعامد ومتجانس. f الدالة المعرفة على المجال $\left[\frac{3}{8}; +\infty\right]$

تمثیلها البیاني و (Δ) المستقیم ذو المعادلة x=x كما هو مبین في الشكل أدناه. C_f أ) شكل جدول تغیرات الدالة C_f استنتج أنه من أجل C_f هان C_f فان غیرات الدالة C_f استنتج أنه من أجل C_f

 $0 \le f(x) < 4$ فإنّ: $0 \le f(x) < 4$ فإنّا: $0 \le f(x) < 4$ فإنّ: $0 \le f(x) < 4$ فإنّ: $0 \le f(x) < 4$ فإنّا: $0 \le f(x) < 4$ فإنّ: $0 \le f(x) < 4$ فإنّ: $0 \le f(x) < 4$ فإنّا: $0 \le f(x) < 4$ فإنّ: $0 \le f(x) < 4$ فإنّ: $0 \le f(x) < 4$ فإنّا: $0 \le f(x) < 4$ فإنّ: $0 \le f(x) < 4$ فإنّ: $0 \le f(x) < 4$ فإنّا: $0 \le f(x) < 4$ فإنّ: $0 \le f(x) < 4$ فإنّ: $0 \le f(x) < 4$ فإنّا: $0 \le f(x) < 4$ فإنّ: $0 \le f(x) < 4$ فإنّ: $0 \le f(x) < 4$ فإنّا: $0 \le f(x) < 4$ فإنّ: $0 \le f(x) < 4$ فإنّ: $0 \le f(x) < 4$ فإنّا: $0 \le f(x) < 4$ فإنّ: $0 \le f(x) < 4$ فإنّ: $0 \le f(x) < 4$ فإنّا: $0 \le f(x) < 4$ فإنّ: $0 \le f(x) < 4$ فإنّ: $0 \le f(x) < 4$ فإنّا: $0 \le f(x) < 4$ فإنّ: $0 \le f(x) < 4$ فإنّ: $0 \le f(x) < 4$ فإنّا: $0 \le f(x) < 4$ فإنّ: $0 \le f(x) < 4$ فإنّ: $0 \le f(x) < 4$ فإنّا: $0 \le f(x) < 4$ فإنّ: $0 \le f(x) < 4$ فإنّ: $0 \le f(x) < 4$ فإنّا: $0 \le f(x) < 4$ فإنّ: $0 \le f(x) < 4$ فإنّ: $0 \le f(x) < 4$ فإنّا: $0 \le f(x) < 4$ فإنّ: $0 \le f(x) < 4$ في أنّ: $0 \le f$



 C_f ب) عيّن العددين الحقيقين α و α حيث $(\alpha>\beta)$ ، حلّي المعادلة: $\alpha>\beta$ واستنتج فاصلتي نقطتي تقاطع

و (Δ) الذي معادلته x=x ، ثمّ عيّن بيانيا وضعية C_f و (Δ). y=x عيّن بيانيا وضعية C_f الذي معادلته f(x)=x وتكافئ: f(x)=x وتكافئ:

ویکافئ: $\alpha=3$ و هما فاصلتا نقطتي التقاطع. $\beta=\frac{1}{2}$ و هما فاصلتا نقطتي التقاطع. $\alpha=3$

$$f(x) - x < 0$$
 و $\frac{\Delta}{8} \le x < \frac{1}{2}$ فإنّ $\frac{3}{8} \le x > 3$ و و $\frac{1}{8} \le x > 3$

$$f(x)-x>0$$
 و عندما $\frac{\Delta}{2}$ فإنّ $\frac{1}{2}< x<3$ وعندما

$$\begin{cases} v_0 = 5 \\ v_{n+1} = f(v_n) \end{cases}$$
 و $\begin{cases} u_0 = 1 \\ u_{n+1} = f(u_n) \end{cases}$ عرّف (v_n) و (u_n) عما يلي: (2

 u_{1} ، u_{0} على ورقة الإجابة ثمّ مثّل على محور الفواصل الحدود: أ) أعد رسم الشكل على ورقة الإجابة ثمّ مثّل

و الحدود: v_1 و الحدود: v_2 و v_1 (دون حسابها موضحا خطوط الإنشاء). و v_2 و الحدود: v_1 و الحدود: v_2 و الحدود: v_3 و الحدود: v_3 و الحدود:

ب) خمّن اتجاه تغير وتقارب كل من المتتاليتين:
$$(v_n)$$
 و (v_n) . التخمين: (u_n) متقاربة ومتزايدة، و (v_n) متقاربة ومتناقصة.

$$3 < v_n \le 5$$
 و $1 \le u_n < 3$. و رو $1 \le u_n < 3$ و رو رو اثبت بالتراجع أنّه من أجل كل عدد طبيعي (3 اثبت بالتراجع أنّه من أجل كل عدد طبيعي

$$1 \le u_n < 3$$
: فَإِنَّ $n \in \mathbb{N}$ أنَّه من أجل (1) أنَّه من أجل

$$(1)$$
 $[f(1) = 1.67] < f(x) \le [f(3) = 3]$ ملاحظة: لأنّ f متز ايدة لدينا: من أجل $1 \le x \le 3$ فإنّ $1 \le x \le 3$

أو $\underline{V}: 0 < 1 \leq u_n < 3$ أو $\underline{V}: 0 < 1 \leq u_{n+1} < 3$ أو نيا: $\underline{V}: 0 < 1 \leq u_n < 3$ أو $\underline{V}: 0 < 1 \leq u_n < 3$ أو $\underline{V}: 0 < 1 \leq u_n < 3$ أو $\underline{V}: 0 < 1 \leq u_n < 3$ أو $\underline{V}: 0 < 1 \leq u_n < 3$ أو $\underline{V}: 0 < 1 \leq u_n < 3$ أو نام المبتق ينتج: من أجل: $\underline{V}: 0 < 1 \leq u_n < 3$ أو نام المبتق ينتج: من أجل: $\underline{V}: 0 < 1 \leq u_n < 3$ أو نام المبتق ينتج: من أجل: $\underline{V}: 0 < 1 \leq u_n < 3$ أو نام المبتق ينتج: من أجل: $\underline{V}: 0 < 1 \leq u_n < 3$ أو نام المبتق ينتج: من أجل: $\underline{V}: 0 < 1 \leq u_n < 3$ أو نام المبتق ينتج: من أجل: $\underline{V}: 0 < 1 \leq u_n < 3$ أو نام المبتق ينتج: من أجل: $\underline{V}: 0 < 1 \leq u_n < 3$ أو نام المبتق ينتج: من أجل: $\underline{V}: 0 < 1 \leq u_n < 3$ أو نام المبتق ينتج: من أجل: $\underline{V}: 0 < 1 \leq u_n < 3$ أو نام المبتق ينتج: من أجل: $\underline{V}: 0 < 1 \leq u_n < 3$

$$3 < v_n \le 5$$
 فإنّ: $n \in \mathbb{N}$ فإنّ أنّه من أجل (20) البرهان بالتراجع:

(2)[
$$f(3) = 3$$
] $< f(x) \le [f(5) = 3.36]$ ملاحظة: لأنّ f متز ايدة لدينا: من أجل $2 < x \le 5$ فإنّ: $2 < x \le 5$

ومنه: $0 \le v_n \le 5$ (محققة) ثانيا: نفرض $0 \le v_n \le 5$ ونبر هن: $0 \le v_{n+1} \le 5$ البرهان: كا $0 \le v_n \le 5$ ومنه: $0 \le v_n \le 5$ وهنه: $0 \le v_n \le 5$ وهنا: $0 \le v_n \le 5$ وهنه: $0 \le v_n \le 5$ وهنه: $0 \le v_n \le 5$ وهنا: $0 \le v_n \le$

 (v_n) عين اتجاه تغيركل من المتتاليتين (u_n) و (v_n)

الحل: ب) 1) اتجاه تغیر
$$(u_n)$$
: لدینا: من أجل $(x_n) = 1$ فأنّ $(x_n) = 1$ ومنه: (u_n) وینتج: الحل: ب) 1) اتجاه تغیر (u_n) : لدینا: من أجل (x_n) متزایدة.

ب) (2) اتجاه تغیر
$$(v_n)$$
: لدینا: من أجل (v_n) فأنّ (v_n) ومنه: $v_n = v_n + v_n = v_n + v_n = v_n + v_n = v$

$$\begin{array}{l} \frac{14}{(2v_n+1)(2u_n+1)} \times (v_n-u_n) : n \\ \frac{14}{(2v_n+1)(2u_n+1)} \times (v_n-u_n) : n \\ \frac{14}{(2v_n+1)(2u_n+1)} \times (v_n-u_n) \\ \frac{14}{(2v_n+1)(2u_n+1)} \times (1) : \frac{14}{(2v_n+1)(2u_n+1)} \times (1) : \frac{14}{(2v_n+1)(2u_n+1)} \times (1) \\ \frac{14}{(2v_n+1)(2u_n+1)} \times \left(\frac{14}{21} = \frac{2}{3}\right) : \dots \\ \frac{1}{2} \times \frac{1}{2v_n+1} \times \left(\frac{1}{2} \times \frac{1}{2}\right) \cdot \frac{1}{2v_n+1} \times \left(\frac{1}{2} \times \frac{1}{2}\right)$$

التمرين الرابع: (07 نقاط)

(O;I;J) الدالة f معرّفة على $]0;+\infty[$ كما يلي: $f(x)=rac{x-1}{x}+\ln x$ والدالة f معرّفة على الدالة البياني الدالة الدالة

ا أحسب f(x) ، $\lim_{x \to \infty} f(x)$ ، أحسب (1)

الحلن محور التراتيب مقارب للمنحنى (C). و $\int_{0}^{\infty} \int_{0}^{\infty} f(x) = -\infty$ و $\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} f(x) = -\infty$ و $\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} f(x) = -\infty$

f'(x)f(x)

ر اتها. المجال f'(x) وأستنتج أن f متز ايدة تماما على المجال f'(x) ، ثمّ شكل جدول تغير اتها. $-1 \notin \left[0; +\infty\right[$ '(x) = 0: x = -1 ومنه من أجل $f'(x) = \frac{1+x}{x^2}$ ولدينا: $(x) > 0 : x \in [0; +\infty]$ والدالة f متزايدة تماما. جدول التغيرات:

(T): y = 2x - 2 العلن معادلة المماس (T) لـ (C) عند النقطة ذات الفاصلة 1. العلن معادلة المماس (T)ب) أدرس تغيرات الدالة g المعرّفة على $]0;+\infty$ بـ: $[0;+\infty]$ النهايتان $[0;+\infty]$ لا تُحسب النهايتان

x	0		1	$+\infty$
$g'\!(x)$		+	0	_
g(x)		/	y 0\	\ <u>\</u>

x	0	1	+∞
sgng(x)		0	

x	0		1	+∞
posi(C)(T)		$\frac{(T)}{(C)}$	X	$\frac{(T)}{(C)}$

 $g'(x) = \frac{-2x^2 + x + 1}{2}$ ويكافئ: $g'(x) = \frac{-2x^2 + x + 1}{2}$ إشارتها من إشارة $x=1\in D_g; \quad x=-rac{1}{2}
otin D_g$ البسط: $2x^2+x+1$ الذي ينعدم من أجل

ج) شكل جدول تغيراتها. واستنتج إشارة g(x) على المجال $]\infty+,0$ المحال $]0;+\infty$ على المحال $]0;+\infty$ المحال تغيرات g وجدول إشارتها أنظر الجدولين المقابلين g استنتج الوضعية النسبية للمنحنى g(x) والمماس g(x).

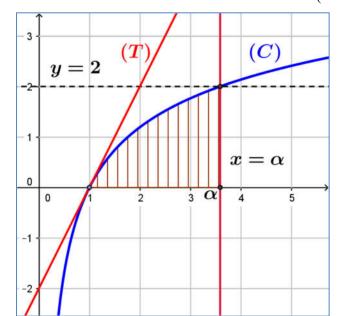
المان. عندما $x \neq 1$ المماس يقع فوق المنحنى وعندما $x \neq 1$ و (C) و متقاطعان. وكذلك ينتج جدول الوضعية التالى: ___

- $3.59 < \alpha < 3.60$ بيّن أنّ المعادلة: f(x) = 2 تقبل في المجال $]0;+\infty[$ حلا وحيدا α ، ثم تحقق أنّ: $0.59 < \alpha < 3.60$ بيّن أنّ المعادلة: f(x) = 2.003 عند f(x) = 0.59 و $[0;+\infty[$ و $[0.59] < 0.59] <math>[0;+\infty[$ عسب م. ق. م تنتج أن المعادلة: f(x) = 0.59 تقبل α حلا وحيدا لها.
 - 5) أرسم المماس (T) والمنحنى (C). الرسم: أنظر الشكل أدناه.
- f(x) = 2x + k ناقش بيانيا حسب قيم العدد الحقيقي x عدد حلول المعادلة: y = 2x + k ناقش بيانيا حسب قيم العدد الحقيقي y = 2x + k الموازي للمماس y = 2x + k الموازي المماس y = 2x + k الموازي المماس y = 2x + k والمنحنى y = 2x + k
 - عندما k < -2 لا توجد حلول؛ عندما k = -2 یوجد حل مضاعف و عندما k < -2 یوجد حلان.
 - رَا $[0;+\infty]$ على المجال مين أنّ الدالة: $x\mapsto x$ على المجال $x\mapsto x$ المجال أصلية للدالة أصلية الدالة أ

 $(x . \ln x - x)' = \ln x$ الحل:

ب) أحسب المساحة A مساحة الحيز المستوي المحدّد بالمنحنى (C)، محور الفواصل والمستقيمين اللذين معادلتيهما: α حيث α هي القيمة المعرّفة في السؤال 4).

<u>الحل:</u>



$$A = \int_{1}^{\alpha} f(x) dx = \int_{1}^{\alpha} \frac{x-1}{x} + \ln x dx =$$

$$\int_{1}^{\alpha} 1 - \frac{1}{x} + \ln x \, dx = \left[-\ln x + x \, \ln x \, \right]_{1}^{\alpha}$$

منه:
$$A = -\ln \alpha + \alpha \ln \alpha u.a$$
 حيث: $A = -\ln \alpha + \alpha \ln \alpha u.a$ حيث: $A = -\ln \alpha + \alpha \ln \alpha u.a$

$$A = 3.59 < \alpha < 3.00$$

بالتوفيق

انتهى تصحيح الموضوع الثاني