ثانوية بلحاج قاسم نورالدين(الشارة) دورة ماى 2017

المدة: 4 ساعات

وزارة التربية الوطنية بكالوريا تجريبي الشعبة: تقنى رياضى

## اختبار في مادة الرباضيات

# على المترشح أن لجنار أحد الموضوعين التالبين الموضوع الأول:

#### التمرين الأول : (5)نقاط)

C(6;-2;-1) و B(6;1;5) , A(3;-2;2) في الفضاء المنسوب إلى المعلم المتعامد والمتجانس  $O(\vec{i},\vec{j},\vec{k})$  نعتبر النقط  $O(\vec{i},\vec{j},\vec{k})$  و المستوي  $O(\vec{i},\vec{j},\vec{k})$ 

- 1) برهن أن المثلث ABC قائم.
- . A عمودي على المستقيم (AB) ويمر من النقطة (2) برهن أن المستوي ((P) عمودي على المستقيم
- (3 أكتب معادلة ديكارتية للمستوي (P') المستوي العمودي على (AC)و المار من النقطة (P')
  - 4) أكتب تمثيلا وسيطيا للمستقيم  $(\Delta)$ مستقيم تقاطع كلا من المستويين  $(P)_{e}$   $(P)_{e}$
  - (5) أ) نعتبر النقطة D(0;4;-1) بين أن المستقيم D(0;4;-1) عمودي على المستوي (5).
    - ب) أحسب حجم رباعي الوجوه ABCD.
    - ج) بين أنَ قيس الزاوية BDC هو  $\frac{\pi}{4}$  rad.
    - (BDC) و المستوي A المسافة بين النقطة A و المستوي BDC ثم استنتج المسافة بين النقطة

### التمرين الثاني (05 نقاط)

(E) :  $z^2 - 2\sqrt{3}z + 4 = 0$  : التالية والتالية :  $\mathbb{C}$  المركبة المعادلة ذات المجهول التالية :  $\mathbb{C}$ 

في المستوي المركب المنسوب إلى المعلم المتعامد و المتجانس المباشر  $\left(O,\vec{u},\vec{v}\right)$  نعتبر النقط B و B التي لواحقها على الترتيب  $z_A=\sqrt{3}-i$  و  $z_A=\sqrt{3}+i$  الترتيب  $z_A=\sqrt{3}+i$  و  $z_A=\sqrt{3}+i$  الترتيب  $z_A=\sqrt{3}+i$  و  $z_A=\sqrt{3}+i$ 

- وزاويته  $\frac{\pi}{3}$  عين  $Z_A$  لاحقة النقطة A صورة النقطة A بالدوران الذي مركزه النقطة  $Z_A$  وزاويته  $Z_A$  (2) (اكتب النتيجة على الشكل الجبري)
- .  $-\frac{3}{2}$  عين  $Z_B$  لاحقة النقطة B صورة النقطة B بالتحاكي الذي مركزه النقطة C ونسبته (3
- R وصف قطرها C التكن الدائرة المحيطة بالمثلث C و التي مركزها النقطة C التكن الدائرة المحيطة بالمثلث C
  - و  $(z_c-2i)(\overline{z_c}+2i)=R^2$  و  $z_c imes\overline{z_c}=R^2$  : أ

$$(z_c + \frac{3\sqrt{3}}{2} - \frac{3}{2}i)(\overline{z_c} + \frac{3\sqrt{3}}{2} + \frac{3}{2}i) = R^2$$

R بين ان :  $z_c - \overline{z_c} = 2i$  ثم ان  $z_c + \overline{z_c} = -\frac{4\sqrt{3}}{3}$  بين ان : بين ان  $z_c - \overline{z_c} = 2i$ 

#### الصفحة 1من4

### **التمرين الثالث(04نغاط)**

 $\begin{cases} u_1 + 2u_2 + u_3 = 100 \\ u_1 \times u_3 = 256 \end{cases}$ : ب $\mathbb{N}^*$  ب المجموعة على المجموعة على المجموعة معرفة على المجموعة المجموعة المحموعة المح

- . q أحسب  $u_1$ ،  $u_2$  عين أساس المتتالية  $u_3$  و  $u_1$ ،  $u_2$  أحسب (1
  - n عبر عن عبارة الحد العام  $u_n$  بدلالة (2
- $P_n=u_1 imes u_2 imes \dots imes u_n$  و الجداء  $S_n=u_1+u_2+\dots+u_n$  : کلا من المجموع (3
  - . 5 على 1 ادرس تبعا لقيم العدد الطبيعي n بواقي القسمة الاقليدية للعدد  $7^n$  على 1
  - .5 على 2016 على 2016 على 149 $^{2n+1}$  على 15 على 201 على 201 على 15 عل

$$S_n' = \frac{1}{\ln 2} \left[ \ln 4 + \ln 4^2 + ... + \ln 4^n \right]$$
 غير معدوم:  $n$  غير معدوم:  $n$ 

 $S_n'+4n^2+7^{4n}\equiv 0$ [5] : أحسب  $S_n'+4n^2+7^{4n}\equiv 0$  يكون العدد الطبيعي العدد الطبيعي -

### التمرين الرابع ( 06 نقاط)

 $g(x)=x^2+1-\ln(x)$  : بعتبر الدالة العددية g المعرفة على المجال المجال  $D=\left[0,+\infty\right[$ 

- اوجد نهایتي الدالة g عند حدود مجال تعریفها (1
- g ثم شكل جدول تغير اتجاه تغير الدالة g ثم شكل جدول تغير اتها و استنتج اشارة الدالة g

المنتنى المثل  $f(x) = x + \frac{1}{2} + \frac{\ln(x)}{x}$  : كالتالي  $D = 0, +\infty$  وليكن  $D = 0, +\infty$  المنتنى الممثل المثل ال

( فسر النتيجة هندسيا ا $\lim_{x \to 0^+} f(x)$  و ا $\lim_{x \to +\infty} f(x)$  ) احسب ( ا(1

$$(\Delta)$$
 بين ان المستقيم  $(C)$  ذا المعادلة  $y=x+rac{1}{2}$  مقارب مائل للمنحني  $(C)$  ثم ادرس وضعية  $(\Delta)$  بالنسبة الى  $(\Delta)$ 

$$f'(x) = \frac{g(x)}{x^2}$$
: فإن  $D = \left]0, +\infty\right[$  في ينتمي الى  $D = \left[0, +\infty\right]$  اـ تحقق انه من اجل كل

ب) استنتج اتجاه تغیر الدالة f على مجموعة تعریفها ثم شكل جدول تغیر اتها

$$A\!\!\left(1; \frac{3}{2}\right)$$
 عند النقطة ( $C$ ) عند المنحني عادلة ديكارتية لمماس ( $T$ ) عند النقطة الماد ج

$$\left[\frac{1}{2},1\right]$$
 اثبت ان المعادلة  $f(x)=0$  تقبل حلا وحيدا  $\alpha$  في المجال (3

(T) و  $(\Delta)$  و (C) ارسم كل من (4)

? ماذا تستنتج 
$$h(x) = \frac{1}{2}x^2 + \frac{1}{2}x + \frac{1}{2}(\ln(x))^2$$
:  $x \in D$  نضع من اجل (1 III

x=1 x=e و y=0 المستقيمات التي معادلتها y=0 مساحة الحيز المستوي المحدد بالمنحني y=0 الصفحة y=0 المفتحة y=0 المفت

# الموضوع الثاني

#### التمريخ الأول (05 نقاط):

 $\|\vec{u}\| = \|\vec{v}\| = 2cm$  الوحدة المنسوب الى معلم متعامد ومتجانس مباشر  $(O,\vec{u},\vec{v})$  الوحدة

. 1 و نصف القطر A و نصف القطر  $Z_A=1$  و الدائرة  $Z_A=1$  و نصف القطر A

#### الجزء الاول:

 $z_{\scriptscriptstyle E}=(1+z_{\scriptscriptstyle B}^{\ 2})$  انتكن النقطة E و  $z_{\scriptscriptstyle B}=1+e^{irac{\pi}{3}}$  ذات اللاحقة و النقطة  $z_{\scriptscriptstyle F}=2$  و عنقطة لاحقتها  $z_{\scriptscriptstyle F}=2$ 

 $(\varsigma)$  ا) بين ان النقطة B تنتمي الى الدائرة (1)

B ثم انشئ النقطة الموجهة  $\left(\overline{AF},\overline{AB}
ight)$  ثم انشئ النقطة وب $\left(\overline{AF},\overline{AB}
ight)$ 

. على الشكل الاسي و  $\left(z_{\scriptscriptstyle B}-z_{\scriptscriptstyle A}
ight)$  و  $\left(z_{\scriptscriptstyle B}-z_{\scriptscriptstyle A}
ight)$  اكتب كلا من العددان المركبان  $\left(z_{\scriptscriptstyle B}-z_{\scriptscriptstyle A}
ight)$ 

. E و E و E و استقامیة ثم انشی النقطه E و استقامیة ثم انشی النقطه E

#### الجزء الثاني

 $z'=1+z^2$  من اجل كل عدد مركب z يختلف عن 1 نعتبر النقطتان M و' M ذات اللاحقتان z و ' z على الترتيب حيث

$$\frac{z'-1}{z-1}$$
 من اجل  $0 \neq z \neq 0$  عطي تفسيرا هندسيا لعمدة العدد المركب (1

. حقيقي  $\frac{z^2}{z-1}$  استنتج ان النقط M , M و ' M في استقامية اذا وفقط اذا كان M و ' M

### التمرين الثاني (04 نقاط):

. C(2;1;1) و B(1;3;0), A(1;1;2) نعتبر النقط  $\left(O,\vec{i},\vec{j},\vec{k}\right)$  و المتعامد والمتجانس  $\left(O,\vec{i},\vec{j},\vec{k}\right)$ 

- C قائم في النقطة ABC ا) برهن ان المثلث (1
- ب) اكتب تمثيلا وسطيا للمستوي (ABC) ثم استنتج معادلة ديكارتية له .
- (2) لتكن (3) المجموعة المعرفة  $(P_m)$  يالمعادلة  $(S_m)$  المجموعة المعرفة  $(S_m)$  المعادلة  $(S_m)$ 
  - . R اسطح کرة يطلب تعين مرکزها  $\Omega$  و نصف قطرها ا
  - .  $\sqrt{2}$  ب عين قيم الوسيط الحقيقي m بحيث  $(P_{\scriptscriptstyle m})$  يقطع (S) وفق دائرة نصف قطرها يساوي  $(P_{\scriptscriptstyle m})$ 
    - 3) أحسب حجم رباعي الوجوه OABC .

#### تحرين الثالث (07 نقاط)

- $g(x)=e^x-x-1$ : التكن الدالة العددية g المعرفة على المجال  $g(x)=e^x-x-1$ .
  - 1) أدرس تغيرات الدالة g.
  - عين إشارة g(x) عندما يتغير g(x) عين إشارة (2
  - .  $e^x x > 0$  ،  $x \in [0; +\infty[$  استنتج أنه من أجل كل عدد حقيقي (3

$$f(x) = \frac{e^x - 1}{e^x - x}$$
 : لتكن الدالة العددية  $f$  المعرفة على المجال [0;1] المعرفة على المجال المعرفة على المجال المعرفة على المجال المعرفة على المعرفة على

 $(O,\vec{i},\vec{j})$  نسمي المنحني الممثل للدالة f على المجال [0;1] في المستوي المنسوب إلى المعلم المتعامد و المتجانس

- .  $f(x) \in [0;1]$  فان  $x \in [0;1]$  فان  $x \in [0;1]$  بين أنه من أجل  $x \in [0;1]$  فان  $f(x) \in [0;1]$ 
  - . y = x نعتبر المستقيم ( $\Delta$ ) نعتبر المستقيم (2
  - $f(x)-x=\frac{(1-x)\times g(x)}{e^x-1}$  ،  $x\in[0;1]$  بين أنه من أجل (أ
  - . [0;1] على المجال المنحني ( $C_f$ ) على المجال المنحني ( $C_f$ ) على المجال
    - . [0;1] عين دالة أصلية للدالة f على المجال [0;1]

. 
$$x=1$$
 ,  $x=0$  مساحة الحيز المستوي المحدد بالمنحني  $\binom{\Delta}{f}$ و  $\binom{\Delta}{f}$ و المستقيمين اللذين معادلتيهما  $\mathrm{cm}^2$ 

$$u_{n+1}=f\left(u_{n}
ight)$$
 و  $u_{0}=rac{1}{2}$  : المعرفة على المجموعة  $\left(u_{n}
ight)_{n\in\mathbb{N}}$  و المعرفة على المجموعة .III

- باستعمال المنحني  $(C_f)$  و المستقيم ( $\Delta$ ) الموجودين على الملحق المراحة ( $u_n$ ). الأولى للمتتالية  $(u_n)_{n\in\mathbb{N}}$ 
  - $1 \cdot \frac{1}{2} \le u_n \le u_{n+1} \le 1$  ، n عدد طبيعي عدد طبيعي (2
    - استنتج أن المتتالية  $\left(u_{n}\right)_{n\in\mathbb{N}}$  متقاربة ثم عين نهايته (3

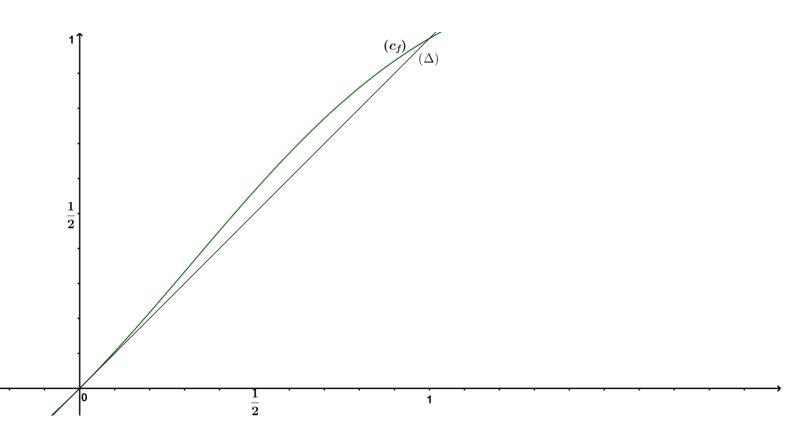
## التمرين الرابع(3انعًاط)

اختر الاجابة الصحيحة من الاجابات المقترحة مع التبرير

. 5 عدد طبيعي يكتب  $\overline{421}$  في النظام ذي الأساس N (1

 $\overline{222}$  (ع -  $\overline{303}$  (ج -  $\overline{111}$  (ب -  $\overline{421}$  (ا : العدد N يكتب في النظام ذي الاساس 6 بالشكل  $\overline{111}$ 

- .  $x^2 + x + 3 \equiv 0$  في مجموعة الاعداد الصحيحة المعادلة : [5] في مجموعة الاعداد الصحيحة المعادلة : [5]
- ا) المعادلة لا تقبل حلا ب ا x = 2[5] (ح . x = 2[5] او x = 1[5] المعادلة المع
  - b=n+1 و a=n(n+2) د نضع a=n(n+2) عدد طبیعي من اجل کل عدد طبیعي


2 (ع a الكبر العددين a و a هو: اa فإن القاسم المشترك الأكبر للعددين a و a هو: المثار القاسم المشترك الأكبر العددين a

## مع مُنيائي لَلْم بالنجاح و التوفيق bac2017 استاذ اطادة

### الصفحة 4من4

| - A | 1 | • | 1 |
|-----|---|---|---|
| حوم | ۷ | ط | ١ |

الإسم و اللقب ......القبم .....القسم ......

