ثانوية بلحاج قاسم نورالدين التاريخ: 2017/02/27

:

مديرية التربية لولاية الـ علوم تجريبية

اختبار في مادة الرياضيات

التمرين الأول: (08

$$.C(-2;2;2) B(1;2;-1) A(-2;0;1) .(O;\vec{i};\vec{j};\vec{k})$$

$$AC AB in tell if $\overrightarrow{AB} \overrightarrow{AC}$$$

 \overrightarrow{AC} \overrightarrow{AB} ، ثم الطولين \overrightarrow{AB} (-1)

C B A ليست في استقامية.

 $\left(\overrightarrow{AB};\overrightarrow{AC}
ight)$ عين قيسا للزاوية الموجهة (2x-y+2z+2=0 : هي ABC هي . 2x-y+2z+2=0

x - 2y + 6z = 0 x + y - 3z + 3 = 0 : والمعرفين بمعادلتيهما على الترتيب (P') (P)-3

x = -2(P') (P) هو تقاطع المستويين y = 3t - 1 $t\in\mathbb{R}$: بين ان المستقيم (Δ) والمعرف بتمثيله الوسيطي التالي

استنتج أن المستويات (P') (P') (ABC) تشترك في نقطة واحدة يطلب تعيين احداثياتها.

. 4 سطح الكرة والتي مركزها النقطة $\omega(1;-3;1)$ ونصف قطرها 3.

) اكتب المعادلة الديكارتية لسطح الكرة (S).

(S) والمستقيم (Δ) .

) بين أن المستوي (ABC)يمس سطح الكرة (S).

(E).....
$$iz + 2 = 2iz + i$$
 \mathbb{C} (1)

(E)
$$z_3 z_2 = \frac{-3+6i}{2+i} , z_1 = (-1+i)(2+i):$$
 (2) $(O; \vec{u}; \vec{v})$

 (Π)

على الترتيب. z_3, z_2, z_1 C B A

 z_3 , z_2 , z_1 in Laure (lirical de laure) z_3 , z_2 , z_1 in Laure (lirical de laure) z_3

(п) C B A

ABC قائم و متساوي الساقين

التمرين الثالث: (80

$$2cm$$
 الوحدة هي $\left(O;\vec{i};\vec{j}\right)$

g الجدول التالي هو جدول تغيرات الدالة العددية -I

$$g(x) = \frac{2x^2}{x^2 + 1} - \ln(x^2 + 1)$$
 کما یلي: $[0; +\infty[$

$$\lim_{x \to +\infty} g(x) = -\infty: \qquad g(1) \qquad (-1)$$

$$g(\alpha) = 0$$
:بحیث [1;+ ∞ [

 $g(\alpha)=0$. $g(\alpha)=0$

 $1,9 \prec \alpha \prec 2$:

 $.[0;+\infty[$ g(x) (

. وليكن
$$(C_f)$$
 وليكن $f(x)=\frac{\ln(x^2+1)}{x}$, $x \neq 0$: \mathbb{R} : $f(0)=0$

g'(x)

g(x)

. ييّن أن $= 1: \lim_{x \to 0} \frac{f(x)}{1}$ ثم فسر النتيجة هندسيا (1

f فردية و الداله f بين أن الداله أ

$$\lim_{x \to -\infty} f\left(x
ight)$$
 $\lim_{x \to +\infty} f\left(x
ight)$ $\lim_{x \to +\infty} f\left(x
ight)$ $\lim_{x \to +\infty} f\left(x
ight) = \frac{2\ln x}{x} + \frac{\ln\left(1 + \frac{1}{x^2}\right)}{x} : \left[0; +\infty\right[$ $\lim_{x \to +\infty} f\left(x
ight)$

 $f'(x) = \frac{g(x)}{r^2}$: 0 بين أنه من أجل كل عدد حقيقي x يختلف عن (-3

f استنتج اتجاه تغير الدالة f

 (C_f) (Δ)

بالتوفيق في بكالوريا 2017