الجمهورية الجزائرية الديمقراطية الشعبية

السنة الدراسية :2018/2017

وزارة التربية الوطنية

المستــوى: 3 رياضيات

ثانوية : العقيد سي الحواس - بسكرة -

المسدة: 4 ساعات

إختبار الثلاثي الأول في مادة الرياضيات

التمرين الأول (05 ن): توجد إجابة واحدة صحيحة لكل حالة حددها مع التعليل:

0	1	+∞	$\lim_{x \to +\infty} v(e^{-3x} + 1)$ فان $\lim_{x \to 1} v(x) = 0$ إذا كانت $\lim_{x \to \infty} v(x) = 0$
$ \lim_{x \to +\infty} f(x) = +\infty $	$\lim_{x \to +\infty} f(x) = 2$	$\lim_{x \to +\infty} f(x) = 0$	ري. x دانه h دالة تحقق لكل عدد حقيقي x موجب $e^{-x} \leq h(x) \leq 2e^{-x}$ تماما $e^{-x} \leq h(x) \leq 2e^{-x}$ و $f(x) = xe^x h(x)$: $f(x) = xe^x h(x)$ فإن:
+∞	-f'(2)	f'(2)	اذا كانت الدالة f قابلة للاشتقاق عند 2 فإن $\lim_{h \to 0} \frac{f(2) - f(2 + 2h)}{2h}$ تساوي:
$f(x) = -e^{-2x} + 1$	$f(x) = -e^{-2x} - 1$	$f(x) = e^{-2x} - 1$	له حل المعادلة التفاضلية $y'+2y-2=0$ الذي يحقق $f(0)=0$ هو f حيث:
\mathbb{R}	[1;+∞[]-∞;0]	.5. مجموعة حلول المتراجحة $e^x-e^{-x}\leq 0$ هي:

التمرين الثاني (05 ن):

ينكن الدالة العددية
$$g$$
 المعرفة على IR بـ: IR المعرفة على g دان حقيقيان . I

- g'(x) .1
- A تنتمي إلى المنحني الممثل للدالة g ، ويكون المماس عند النقطة $A\left(\ln 2;\ln 2\right)$ تنتمي إلى المنحني الممثل للدالة a ، ويكون المماس عند النقطة $A\left(\ln 2;\ln 2\right)$ موازيا لحامل محور الفواصل.

$$f(x) = x + 2 - \frac{4e^x}{e^x + 2}$$
 :ب نعتبر الدالة العددية f المعرفة على IR المعرفة على . II

 $\left(O; \vec{i}; \vec{j}
ight)$ التمثيل البياني للدالة f في المستوي المنسوب إلى المعلم المتعامد والمتجانس: $\left(C_f
ight)$

- $+\infty$ عين نهايتي الدالة f عند f عند نهايتي الدالة الدالة f
- ب) اثبت أن المستقيم (D') ذو المعادلة y=x+2 والمستقيم y=x+2 والمستقيم اثبت أن المستقيم y=x+2 هما مستقيمان مقاربان مائلان للمنحني y=x+2 على الترتيب.

$$f'(x) = \left(\frac{e^x - 2}{e^x + 2}\right)^2$$
: لدينا IR من x من اجل كل x (۱ .2

- f على الدرس اتجاه تغير الدالة f على الدرس اتجاه تغيرات الدالة الدالة بالدرس
 - ج) استنتج أن النقطة A هي نقطة انعطاف للمنحني (ج
- -1.7 < lpha < -1.6: حيث lpha حيث حامل محور الفواصل في نقطة وحيدة فاصلتها lpha حيث (C_f) يقطع حامل محور
 - $\left(O; \vec{i}; \vec{j}
 ight)$ و $\left(D
 ight)$ و $\left(C_f
 ight)$ في المعلم $\left(C_f
 ight)$.3
 - f(x)=x+m : عدد حلول المعادلة m عدد عدم الوسيط الحقيقي m عدد عدم بيانيا، حسب قيم الوسيط الحقيقي

التمرين الثالث (05 ن):

$$g(x)=rac{1}{2}x^2-\ln x$$
 يلي: g المعرفة على المجال $g(x)=rac{1}{2}$ كما يلي: g المعرفة على المجال .I

د. ادرس تغیرات الدالهٔ
$$g$$
 علی $]0;+\infty$ ، ثم شکل جدول تغیراتها

$$g(x) \ge \frac{1}{2}$$
: فان $]0;+\infty[$ من اجل كل x من اجل كل .2

$$f(x) = \frac{1}{2}x + \frac{\ln x}{x}$$
 ينعتبر الدالة العددية f المعرفة على المجال 0 ; $+\infty$ المعرفة على المجال $f(x) = \frac{1}{2}$

$$\left(O; \vec{i}; \vec{j}
ight)$$
 التمثيل البياني للدالة f في المستوي المنسوب إلى المعلم المتعامد والمتجانس: $\left(C_f\right)$

$$+\infty$$
 عين نهاية الدالة f عند 0 و عند 1

بین أن
$$\left(C_{f}
ight)$$
 یقبل المستقیم $\left(\Delta
ight)$ مقارب مانل عند $+\infty$ یطلب تحدید معادلة له.

$$.(\Delta)$$
 و (C_f) ب) ادرس الأوضاع النسبية بين

$$f'(x) = \frac{g(x)+1}{x^2}$$
: لينا $(x) = \frac{g(x)+1}{x^2}$: لينا انه من الجل كل $(x) = \frac{g(x)+1}{x^2}$

$$f$$
 استنتج اتجاه تغير الدالة f على المجال $]0;+\infty[$ على المجال على الدالة المجال الدالة $]0;+\infty[$

$$x_0$$
 مماس للمنحني (C_f) هي النقطة ذات الفاصلة .4

$$rac{1}{2}$$
 يساوي (T) عين ۽ الحان معامل توجيه (أ

$$\chi_{\,0}$$
 اكتب معادلة المماس $(T\,\,)$ في النقطة ذات الفاصلة

$$0.5 < eta < 1$$
: بين أن المعادلة $f\left(x
ight) = 0$ تقبل حلا وحيدا وحيد .5

$$\left(O; \vec{i}; \vec{j}
ight)$$
 في المعلم $\left(C_f
ight)$ و $\left(\Delta
ight)$ ، $\left(C_f
ight)$.6

$$y$$
 '= $y^2 + 2y$ التمرين الرابع (05 ن): نعتبر المعادلة التفاضلية التالية:

.
$$(E)$$
 تحقق أن $\mathbf{0}$ هو حل للمعادلة (\mathbf{I}

.
$$z=\frac{1}{y}$$
 ونضع $y \neq 0$ نفرض أن

.
$$z$$
 '= $-2z$ -1(E ') : تكافيء المعادلة (E) تكافيء المعادلة (E)

.
$$(E')$$
 ما المعادلة (E') ثم إستنتج حلول المعادلة

.
$$g(0) = 0$$
 ، $g'(x) = \frac{1}{\sqrt{1-x^2}}$ تحقق $g'(x) = \frac{1}{\sqrt{1-x^2}}$ دالة معرفة على : $g'(x) = \frac{1}{\sqrt{1-x^2}}$ و التها المشتقة معرفة على : $g'(x) = \frac{1}{\sqrt{1-x^2}}$

.
$$h(x)=g(\cos x)$$
 : ب $-\pi;0$ بالمعرفة على المعرفة على الدالة المعرفة على الدالة المعرفة على الدالة المعرفة على المع

.
$$h'(x)=1$$
: فإن $x\in]-\pi;0$ كل كل (1

.
$$h(x)$$
 غين عبارة $h\left(-\frac{\pi}{2}\right)$ أحسب (2