الجمهورية الجزائرية الديّمقراطية الشّعبية وزارة التّربية الوطنية

مديرية التربية لولاية تبسة

امتحان بكالوريا تجريبي للتعليم الثانوي دورة (ماي 2018)

ثانوية: الشّهيد شريط لزهر الحمّامات

الشّعبة: تقنى رياضى

المُدّة: 04 سا و30د

اختبار في مادة الرياضيات

على المترشم أز بختا الحد الموضوعين التاليين:

الموضوع الأول

التمرين الأول: (04 نقالم)

2,1,1,0,-1,-2 على 6 كرات. الكرات متماثلة و لا نفرّق بينها باللّمس، تحمل الأعداد 3 كرات من الكيس. نسحب عشوائيا و في آن واحد 3 كرات من الكيس.

- 1) أحسب احتمال كل من الأحداث التالية:
- ". توجد على الأقل كرة تحمل الرقم 1
- ". مجموع الأعداد المكتوبة على الكرات المسحوبة معدوم "B
- . ليكن X المتغير العشوائي الذي يرفق بكل سحب مجموع الأرقام المحصل عليها (2
 - أ) أعط قانون الاحتمال للمتغير العشوائي X و أحسب أمله الرياضياتي.
 - ب) احسب التباين و الانحراف المعياري.

التمرين الثّاني: (04 نقالم)

 $N \equiv 5 \begin{bmatrix} 13 \\ N \equiv 1 \begin{bmatrix} 17 \end{bmatrix}$ (S) التي تحقق الجملة (S) التي تحقق الجملة الأعداد الصحيحة $N \equiv 1 \begin{bmatrix} 17 \end{bmatrix}$

- (S) تحقق أنّ العدد 239 حلّ للجملة ((S)
- أثبت أن العدد y يكتب على الشكل y=1+17x=5+13y محيث x و y عددان صحيحان نسبيان (2 يحققان x=1+17x=5+13y عددان صحيحان نسبيان (2 يحققان x=17x-13y=4
 - y و x المجهولين الصحيحين z^2 المعادلة z^2 المعادلة (3
 - (S) استنتج أنه يوجد عدد صحيح k يحقق N=18+221k ، ثم استنتج حلول الجملۃ (S)

التّمرين التّالث: (05 نقالم)

- $P(z)=z^3-(8+3i)z^2+(25+24i)z-75i$ نعتبر کثیر الحدود $P(z)=z^3-(8+3i)z^2+(25+24i)z-75i$ المتغیّر المرحّب (1
 - أ) أحسب P(3i) ثُمّ حلّل أP(2i) إلى جداء عاملين.
 - P(z)=0 ب) حل، في مجموعة الأعداد المركبة \mathbb{C} المعادلة

- و D المستوي المركّب منسوب إلى المعلم المتعامد و المتجانس (O,\vec{u},\vec{v}) . نعتبر النّقط C ، B ، A نعتبر النّقط $z_D=4-3i$ و $z_D=4-3i$ و $z_D=4-3i$ و التي لواحقها على الثّرتيب $z_D=4-3i$ و $z_D=4-3i$ و $z_D=4-3i$
- نات علّم النّقط C ، B ، A و C . ثم بين أن النقط تنتمي الى نفس الدائرة التي مركزها $z_{\perp}=2$ اللاحقة $z_{\perp}=2$
- ب) أكتب على الشكل الأسي العددين $L_1=rac{z_C-z_B}{z_D-z_B}$ و $L_1=rac{z_C-z_A}{z_D-z_A}$ ب أكتب على الشكل الأسي العددين ACD
 - ج) عين قيمة العدد n حتي يكون عين قيمة العدد n
 - . AD الانسحاب الذي شعاعه T (3
 - أ) أكتُب العبارة المركّبة للانسحاب T.
 - ب) أوجد $z_{\scriptscriptstyle E}$ لاحقة النّقطة E صورة النّقطة C بالإنسحاب T ، ثُمّ علّمها.

التّمرين الرّابع: (07 نقالم)

 $g(x)=-x-1+e^x$ بالكن g الدالّة العدديّة المُعرّفة على $\mathbb R$ بالكن و الدالّة العدديّة المُعرّفة على $\mathfrak I$

ا أدرس تغيُّرات الدّالّة g، ثُمّ شكّل جدول تغيُّراتها.

g(x)>0 , $\left]0,+\infty\right[$ من أجل كل x من أجل (2

$$f(x)=e^{-x}+\ln(x+1).....x\geq 0$$
 ' $f(x)=rac{1}{x}e^{rac{1}{x}}+1....x< 0$ ' $f(x)=x+1$ ' $f(x)$

. و ليكن $\left(C_{_f}
ight)$ تمثيلها البياني في معلم متعامد و متجانس للمستوي

- أحسبُ f(x) و $\lim_{x \to +\infty} f(x)$ فسرٌ هندسياً النّتيجة. (1
 - (2) أ) بين أنّ الدّالّة f مستمرة عند (3)

ب) أدرُس قابليّۃ اشتقاق الدّالّۃ f عند f عند هندسيّاً النّتيجۃ (ب

- $[0,+\infty]$ عين الدّالّة المشتقة للدّالّة f على $[0,+\infty]$ عين الدّالّة المشتقة للدّالّة f ثُمّ شكّل جدول تغيّراتها.
 - $.(C_{\scriptscriptstyle f})$ أرسم (4
- بين $H(x)=-x-1-e^{-x}+(x+1)\ln(x+1)$ بين $]0,+\infty[$ بين $[0,+\infty[$ بين $]0,+\infty[$ بين $[0,+\infty[$ بين المحصور بين $[0,+\infty[$ بين المحصور بين $]0,+\infty[$ بين المحصور بين $[0,+\infty[$ بين $]0,+\infty[$ محور الفواصل و المستقيمين اللذين معادلتهما $[0,+\infty[$ بين معادلتهما $[0,+\infty[$

انتمر للموضوع الأول

الموضوع الثانس

التّمرين الأول: (04 نقالم)

- \cdot ، \cdot
- $_{1}$ مضاعف ل $_{2}$.7 برهن أنه من أجل كل عدد طبيعي $_{1}$: العدد $_{2}$: العدد (239) برهن أنه من أجل كل عدد طبيعي العدد $_{1}$
 - $u_{\scriptscriptstyle n}=2\times 3^{\scriptscriptstyle n}+3\times 4^{\scriptscriptstyle n}$ بحيث . $S_{\scriptscriptstyle n}=u_{\scriptscriptstyle 0}+u_{\scriptscriptstyle 1}+\ldots\ldots+u_{\scriptscriptstyle n}$ بحيث n الجموع (1) أحسب بدلالت
 - . S_n عين الأعداد الطبيعية n حتى يقبل الأعداد الطبيعية الم
- $S_n'=4^{n+1}-3(n+1)-1$ ، بين أن $S_n'=C_{n+1}^23^2+C_{n+1}^33^3+\dots+C_{n+1}^{n+1}3^{n+1}$ نعتبر المجموع (4

التمرين الثاني (04 نقالم)

.C(3,2,4) و B(-3,-1,7) ، A(2,1,3) الفضاء منسوب إلى معلم متعامد و متجانس. نعتبر النّقط

. (ABC) أثبت أنّ النقط B ، A و B تعين مستويا وحيدا (1

$$(\Delta)$$
 $x=-7+2t$ $y=-3t$ ليكن (Δ) المستقيم المعرف بالتمثيل الوسيطي $t\in\mathbb{R}$ ليكن (Δ) المستقيم المعرف ا

(ABC) بين أن المستقيم (Δ) يُعامد المستوي (ABC)، ثم أكتُب معادلة ديكارتيّة للمستوي

- (3) نسمي H النقطة المشتركة بين (Δ) و (ABC) و (A,-2);(B,-1);(C,2) بين أن H هي مرجح الجملة المثقلة
 - : مجموعتي النقط من الفضاء و التي تحقق (T_{2}), (T_{1}) نعتبر (4

$$(T_2): \left\| -2\overrightarrow{MA} - \overrightarrow{MB} + 2\overrightarrow{MC} \right\| = \sqrt{29} \ \mathbf{g} \ (T_1): (-2\overrightarrow{MA} - \overrightarrow{MB} + 2\overrightarrow{MC})(\overrightarrow{MB} - \overrightarrow{MC}) = 0$$

. الجموعتين المجموعتين ($T_{\scriptscriptstyle 2}$), $(T_{\scriptscriptstyle 1})$ ، ثم عين طبيعة تقاطعهما

التّمرين الثالث: (05 نقالم)

المستوي المركّب منسوب إلى المعلم المتعامد و المتجانس (O, \vec{u}, \vec{v}) . عين الاقتراح الصحيح مع التعليل من بين الاقتراحات التالية:

- المعادلة $z^3-2z^2+16=0$ للمتغيّر المركّب z حيث $z^3-2z^2+16=0$ للمتغيّر المركّب S=2,4+2i,4-2i جS=-2,4+2i,4-2i ب جS=-2,2+2i,2-2i (أ
- OAB نعتبر النقطتين B,A ذات اللواحق $z_A=2+2i$ و $z_A=2+2i$ على الترتيب فإن المثلث (2) نعتبر النقطتين OAB ذات اللواحق OAB ذات اللواحق OAB فائم في OAB بنعتبر النقطتين OAB فائم في OAB فائم في OAB و متساوي الساقين OAB
 - $z'=e^{i\frac{\pi}{3}}z$ المعرف بـ $z'=e^{i\frac{\pi}{3}}z$ المعرف بـ (3) المعرف بـ (3) المعرف بـ (3) المعرف بـ (4) المعرف ب
 - z' عمدة العدد المركب $z'=e^{irac{\pi}{3}}$ الشكل الجبري للعدد $z'=e^{irac{\pi}{3}}$ الدينا (4
- $z'=2+i \left(\mathbf{z} \qquad z'=(\cos\frac{\pi}{3})+i(\sin\frac{\pi}{3}) \right) \left(\mathbf{y} \qquad z'=(\cos\frac{\pi}{3}.\cos\theta-\sin\frac{\pi}{3}.\sin\theta)+i(\cos\frac{\pi}{3}.\sin\theta+\sin\frac{\pi}{3}.\cos\theta)\right) \left(\mathbf{v} \mathbf{z}' \mathbf{z$
 - $rg(z-z_{_A})=rg(iz-z_{_B}):$ هي هي M من المستوي و التي تحقق M مجموعة النقط M

 $-iz_{_B}$ المستقيم (AB' بإستثناء (AB' باستثناء (AB' المستقيم المرة قطرها (AB' المستقيم (AB' باستثناء)

التّمرين الرابع: (07 نقاله)

- $g(x)=x+2-2\ln(x)$ الدالّة العدديّة المُعرّفة على المجال بـ: $g(x)=x+2-2\ln(x)$ الدالّة العدديّة المُعرّفة على المجال بـ: .I
 - اً أدرس تغيرات الدّالّة g، ثُمّ شكّل جدول تغيّراتها.
 - g(x)>0 تحقق أن g(2)>0 ثم استنتج أن (2
 - $f(x)=x-\ln(x-1)^2$: الدالّة العدديّة المُعرّفة على $0,+\infty$ بـ الدالّة العدديّة المُعرّفة العرفة العرفة على ا $0,+\infty$
 - و ليكن $\left(C_{_f}
 ight)$ تمثيلها البياني في معلم متعامد و متجانس للمستوي.
 - . أحسنب نهايات الدّالّـة f بجوار أطراف مجموعة تعريفها. ثم فسر النتائج هندسيا (1
- ثبت أن اشارة f'(x) من اشارة g(x) ثم استنتج اتجاه تغيُّر الدّالّة f . شكّل جدول تغيُّراتها. (2
- اثبت أن المستقيم (Δ) ذا المعادلة y=x مستقيم مقارب مائل لـ (C_f) . ثم أدرس الوضع النسبي لـ (Δ) و (C_f)
 - . بين أن $f''(x)=rac{2}{x^2}(\ln x-2)$ ثم استنتج أن $f''(x)=rac{2}{x^2}$ بين أن (4

انتمر الموضوع الثانب بالتوفيق في شمادة البكالوريا اساتذة المادة

الجمهورية الجزائرية الديّمقراطية الشّعبية وزارة التّربية الوطنية

مديرية التربية لولاية تبسة

امتحان بكالوريا تجريبي للتعليم الثانوي دورة (ماي 2018)

ثانوية: الشهيد شريط لزهر الحمامات

الشعبة: علوم تجريبية

المدّة: 03 سا و30د

اختبار في مادة الرياضيات

على المترشم أن بختا أحد الموضوعين التاليين:

الموضوع الأول

التمرين الأول: (4 نقالم)

$$u_{_0}=rac{3}{2}$$
 نعتبر المتتالية $u_{_{n+1}}=1+\sqrt{u_{_n}-1}$ نعتبر المتتالية المُعرّفة ب

- $1 < u_n < 2$ برهن بالتراجع، أنه من أجل كل عدد طبيعي n فإن (1
 - بين أن $(u_{_n})$ متزايدة ثم استنتج أنها متقاربت. (2
 - $t_{_{n}}=\ln(u_{_{n}}-1)$:نعتبر المتتالية $\left(t_{_{n}}
 ight)_{_{n\in\mathbb{N}}}$ المُعرّفة ب

$$n$$
 بين أن u_n هندسية أساسها $1\over 2$ ثم عبر عن t_n بدلالة t_n و استنتج بدلالة أ-

$$\lim_{n \to +\infty} (u_n)$$
 ب $\lim_{n \to +\infty} (t_n)$ ب

$$P_{\scriptscriptstyle n} = t_{\scriptscriptstyle 0} \times t_{\scriptscriptstyle 1} \times \times t_{\scriptscriptstyle n}$$
 أحسب الجداء

التَّمرين الثَّانين (4 نقاله)

- حل، في مجموعة الأعداد المركّبة $\mathbb C$ ، المعادلة $z^2+\sqrt{3}z+1=0$. ثم أكتب الحلول على الشكل الأسي .
- التي الحقتها (2) المستوي المركّب منسوب إلى المعلم المتعامد و المتجانس (O,\vec{u},\vec{v}) . نعتبر النّقطۃ A ، التي الاحقتها $z_A=-rac{\sqrt{3}}{2}+rac{1}{2}i$

عين $z_{\scriptscriptstyle B}$ لاحقة النقطة B التي تنتمي للمحور التخيلي بحيث يكون المثلث B متقايس الأضلاع.

- $-rac{\pi}{3}$ ليكن R الدّوران الذي مركزه النّقطة O وزاويته (3
 - اً) أكتُب العبارة المركّبة للدّوران R
- R بالدّوران A' بالدّوران عند بالدّوران $z_{A'}$ بالدّوران بالدّوران
- . $|iz-2-i|=|\overline{z}+3i|$ ، مجموعة النّقط M ، ذات اللاّحقة z ، من المستوي المركّب بحيثُ: T ، هم المستوعة T ، هم الشئها .

التّمرين التّالث: (5 نقالم) : صندوق يحتوي على 4 كرات حمراء و كرتين سوداوين . الكرات متماثلة و لا نفرق بينها باللمس . نسحب عشوائيا على التوالي ودون ارجاع كرتين من الصندوق .

- " أحسب احتمال كل من الحوادث التالية: $A_{\scriptscriptstyle D}$ " لم نسحب أي كرات سوداء (1
 - ". سحب ڪرة سوداء بالضبطA
 - ". سحب ڪرتين سوداوين A_{σ}
- بعد السحب الأول بقيت في الصندوق 4 كرات ، نجري سحبا اخر على التوالي ودون ارجاع، نعتبر الحوادث التالية: B_0 لم نسحب أي كرات سوداء عند السحب الثاني".
 - " سحب كرة سوداء بالضبط في السحب الثانى ". B_1
 - ". ڪرتين سوداوين عند السحب الثاني B_2
 - $P(B_0)$ واستنتج $P_{A_0}(B_0)$ ، $P_{A_0}(B_0)$ ، $P_{A_0}(B_0)$ واستنج (أ
- ب) اذا علمت أنه عند السحب الثاني حصلنا على كرة سوداء بالضبط ، فما هو احتمال الحصول على كرة سوداء بالضبط عند السحب الأول .
 - 3) نسحب عشوائيا 3 كرات من الصندوق في أن واحد . نعتبر المتغير العشوائي الذي يرفق بكل سحب عدد الكرات الحمراء المسحوبة.
 - أ) أعط قانون الاحتمال للمتغير العشوائي X و أحسب أمله الرياضياتي.
 - ب) احسب التباين و الانحراف المعياري.

التَّمرين الرَّابع: (07 نقالم)

- $g(x)=rac{x+1}{2x+1}-\ln(x)\ \left]0,+\infty
 ight[$ لتكن g الدالّة العدديّة المُعرّفة على المجال .I
 - اً أدرس تغيُّرات الدّالّة g، ثُمّ شكّل جدول تغيُّراتها. (1
 - 1<lpha<2 تقبل حلا وحيدا lpha يحقق g(x)=0 أثبت أن المعادلة (2
 - $[0,+\infty]$ من أجل كل x من g(x) من أجل (3
- اا. لتكن f الدالّة العدديّة المُعرّفة على $\int 0,+\infty$ ب $\int 0,+\infty$ و ليكن f(x)=f(x)=f(x) تمثيلها الدالّة العدديّة المُعرّفة على f(x)=f(x)

.5cm
ightarrow 1 البياني هي معلم متعامد للمستوي. وحدة الطول : محور الفواصل 1cm
ightarrow 1 ، محور التراتيب

- أحسبُ f(x) و $\lim_{x \to +\infty} f(x)$ فسرٌ هندسيّاً النّتائج. (1
- $f'(x) = \frac{2(2x+1)}{(x^2+x)^2}g(x)$:ان $g(x) = 0,+\infty$ ان f(x) = 0 من المجال f(x) = 0 من المجال عن المدّالّة f(x) = 0 من المجال تغيّر الدّالّة f(x) = 0 من المجال تغيّر الدّالّة f(x) = 0 من المجال تغيّر الدّالّة والمدّالة والم
 - 1 عين معدلة الماس (Δ) عند النقطة ذات الفاصلة (3
 - f(lpha)=0.4 أنشئ (Δ) و (C_f) . تعطى (4
- xناقش، بيانيّاً، حسب قيم الوسيط الحقيقي m عدد و إشارة حلول المعادلة، ذات المجهول الحقيقي $x^2+x+2\ln x=m(x^3+x^2)$ حيث ُ

انتمر للموضوع الأول

الموضوع الثانىي

التمرين الأول: (04 نقالم)

 U_1 على U_2 يحتوي على U_3 يحتوي على U_3 وكرتين تحملان الرقم U_3 يحتوي على U_4 يحتوي على U_4 كرات حمراء و U_3 كرات خضراء الكرات متماثلة و لا نفرق بينها باللمس . نسحب عشوائيا كرة من الصندوق U_4 .

- 1) أحسب احتمال كل من الحوادث التالية :
 - الكرة المسحوبة تحمل الرقم $1\,$ ". A
 - "الكرة المسحوبة تحمل الرقم $\,2\,$ ".
- ي نعتبر التجربة التالية نسحب كرة من الكيس U_1 إذا كانت تحمل الرقم 1 نسحب كرة من U_2 نعتبر التجربة التالية نسحب كرتين في ان واحد من U_2
 - أحسب احتمال الحصول على كرة حمراء". B_0
 - ". أحسب احتمال الحصول على كرتين حمراء $B_{\scriptscriptstyle 1}$
 - نسحب عشوائيا 3 كرات من الصندوق U_2 و في آن واحد و نعتبر المتغير العشوائي الذي يرفق بكل السحب عدد الكرات الحمراء المسحوبة.
 - أ) أعط قانون الاحتمال للمتغير العشوائي X و أحسب أمله الرياضياتي.
 - ب) احسب التباين و الانحراف المعياري.

التمرين الثانين (04 نقالم)

.C(3,2,4) و B(-3,-1,7) ،A(2,1,3) الفضاء منسوب إلى معلم متعامد و متجانس. نعتبر النّقط

- . (ABC) أثبت أنّ النقط B ، A و B تعين مستويا وحيدا (1
- (Δ) x=-7+2t y=-3t $t\in\mathbb{R}$ ليكن (Δ) المستقيم المعرف بالتمثيل الوسيطي z=4+t

(ABC) بين أن المستقيم (Δ) يُعامد المستوي (ABC)، ثم أكتُب معادلة ديكارتيّة للمستوي

- (ABC) نسمي H النقطۃ المشترکۃ بین (Δ) نسمي H نسمي (3 بين أن H هي مرجح الجملۃ المثقلۃ H
 - نعتبر $(T_1),(T_1)$ مجموعتى النقط من الفضاء و التى تحقق :

$$(T_2): \left\|-2\overrightarrow{MA}-\overrightarrow{MB}+2\overrightarrow{MC}\right\|=\sqrt{29} \ \ \textbf{o} \ \ (T_1): (-2\overrightarrow{MA}-\overrightarrow{MB}+2\overrightarrow{MC})(\overrightarrow{MB}-\overrightarrow{MC})=0$$
 عين طبيعة ڪل من المجموعتين $(T_2), (T_1)$ ، ثم عين طبيعة تقاطعهما .

 (O, \vec{u}, \vec{v}) المستوي المركب منسوب إلى معلم متعامد و متجانس ((O, \vec{u}, \vec{v}) المستوي المركب منسوب إلى معلم المستوي المركب المر

نعتبر في مايلي النّقط B ، A و C التي لواحقها $z_{_A}=4+3i$ ، $z_{_A}=4-3i$ و $z_{_C}=7$ على التّرتيب عين الاقتراح الصحيح مع التعليل من بين الاقتراحات التالية :

المعادلة $z^3 - 15z^2 + 81z - 175 = 0$ للمتغيّر المركّب z حيث $z^3 - 15z^2 + 81z - 175 = 0$ المعادلة $S = \left\{ -7, 4 - 3i, 4 + 3i \right\}$ (1) $S = \left\{ 7, 4 - 3i, 4 + 3i \right\}$ (1)

:2) العدد $\left(rac{z_A-z_C}{z_B-z_C}
ight)^{2018}$ يساوي:

. -1 (ج

ABC المثلّث $z_{_{\!A}}-z_{_{\!C}}=i\!\left(z_{_{\!B}}-z_{_{\!C}}
ight)$ المثلّث (3

أ) قائم $\overset{.}{\mathcal{L}}$ متساوي الساقين ج متساوي الساقين . C قائم $\overset{.}{\mathcal{L}}$ ومتساوي الساقين .

B العبارة المركبة للدوران R الذي مركزه ω ذات اللاحقة $z_\omega=4$ و يُحوّل النّقطة C إلى النّقطة (4 فإن العبارة المركبة لهذا التحويل :

z' = iz + 3 - 4i (z' = 2iz + 3 - 4i) z' = iz + 4 - 4i(1)

مجموعة النّقط M ، ذات اللاّحقة z ، من المستوي المركّب حيثُ يكون $\frac{z-z_B}{z-z_C}$ تخيّليّاً صرفاً جزؤه التّخيّلي موجب هي :

C المستقيم (AB) باستثناء النّقطتين B المستقيم (BC) المستقيم المرة قطرها النّقطتين B المستقيم (B باستثناء النّقطتين

التّمرين الرابع: (07 نقاله)

- $g(x)=2-(2x+1)e^{2x}:$ ب بازg دالیّ عددیّت مُعرّفت علی g
 - اً أدرس تغيرات الدّالّة g، ثُمّ شكّل جدول تغيّراتها. (1
- \mathbb{R} على g(x) على أن المعادلة g(x)=0 تقبل حلا وحيد lpha بحيث أن المعادلة g(x)=0 تقبل حلا وحيد lpha
 - $f(x)=2x-1-xe^{2x}$ اا. لتكن f دالّة عدديّة مُعرّفة على $\mathbb R$ بـ

و ليكن $\left(C_{f}
ight)$ تمثيلها البياني في معلم متعامد و متجانس للمستوي.

- أحسبُ نهايات الدّالَّة f بجوار أطراف مجموعة تعريفها. ثم فسر النتائج هندسيا . (1
- أثبت أن اشارة f'(x) من اشارة g(x) ثم استنتج اتجاه تغيُّر الدّالَّة f ، و شكّل جدول تغيُّراتها.
- اثبت أن المستقيم (Δ) ذا المعادلة y=2x-1 مستقيم مقارب مائل لـ (C_f) ، ثم أدرس الوضع النسبي الحري (Δ) و (C_f)
 - f(lpha) و f(lpha) بين أن $f(lpha)=-1+rac{4lpha^2}{2lpha+1}$ بين أن $f(lpha)=-1+rac{4lpha^2}{2lpha+1}$ بين أن
- بين أن الدائـۃ H المعرفۃ علـی \mathbb{R} بـ ين أن الدائـۃ أصليۃ ئـ $H(x)=rac{1}{4}(2x-1)e^{2x}$ بين أن الدائـۃ ئـ x=1 المعرفۃ علـی x=1 و x=1 و المستقيمات x=1 و x=1 و المستقيمات الحيز المستوي المحدد بالمنحني C_f

انتمر للموضوع الثانس

بالتوفيق فرشمادة البكالوريا

اساتخة الماحة

