

الثانوية الجديدة رقم 02 الابيض سيدي الشيخ

احتبار الفعل الثاني في مادة البياطيات

2019/2018



المسدة: 04ساعات

معلومات و توجیهات عامة

-الاجابة المقدمة تكون باحد اللونين الازرق او الاسود كما يمنع استعمال القلم المصحح - 2-يمكن للطالب انجهاز التمارين حسب الترتيب الذي يناسبه

<u> التمرين الاول :</u> (<u>05نقاط</u>)

63x+5y=159.....(E) نعتبر المعادلة (E) ذات المجهولين الصحيحين x و y حيث:

ا حلولا (E) تقبل ان المعادلة (E) تقبل حلولا المعادلة (E) تقبل حلولا المعادلة (E)

(E) بـ)- عين الحل الخاص $(x_0;y_0)$ للمعادلة (E) الذي يحقق $(x_0;y_0)$ عين الحل الخاص $(x_0;y_0)$

 $\left|13x+y-33
ight| \prec 4$: عين كل الثنائيات $\left(x;y
ight)$ حلول المعادلة عين كل الثنائيات

عدد طبيعي يكتب $\overline{5lpha0lpha}$ في نظام التعداد ذي الاساس 7 و يكتب $\overline{eta10eta0}$ في نظام التعداد ذي الاساس 5 أدى الاساس 5

و lpha العشري (a+4) و lpha و lpha و lpha النظام العشري lpha

5 -ادرس حسب قيم العدد الطبيعي n باقي القسمة الاقليدية للعــدد 3^n على 5-ا

 $35\!\prec\! n\!\prec\! 65$ ب $3^{4^n+3^n-a}\!=\!0ig[5ig]$ ب $n\!=\!0$ التي تحقق $n\!=\!0$ التي تحقق $n\!=\!0$

<u>التمرين الثاني : (05نقــاطُ)</u>

 $U_{n+1}=2\sqrt{U_n}$: n عدد طبیعي $u_0=4e^3$: نعتبر المتتالیة $u_0=4e^3$: نعتبر المتتالیة $u_n>4$ المعرفــة ب $u_n>4$ فــان: $u_n>4$

ب)- حدد اتجاه تغير المتتالية $\left(U_{n} \right)$ مساذا تستنتج

 $V_n = \ln ig(U_nig) - 2 \ln 2$: نعرف مـن اجل كل عـدد طبيعي n المتتالية i المتتالية -

ا)- بین ان (V_n) متتالیة هندسیة یطلب تعیین اساسها q و حدها الاول

 $\lim_{x o +\infty} U_n$ بـ)- اکتب عبــارة کل من V_n و U_n بدلالــة u ثــم حسب U_n

 $S_n = V_0 \, + V_1 \, + \ldots + V_n$: من اجل کل عـدد طبیعي (3

 $S_n = 6 \left(1 - e^{-2020 \ln 2} \right)$: عين العدد الطبيعي الذي يحقق (١- المبيعي الذي الخي

 $t_n = V_0^2 + V_1^2 + \dots + V_n^2$: حيث t_n عن المجموع t_n عن المجموع (ب

صفحة 2/1

1ن

التمرين الثالث (**04نقـاطُ)**:

يحتوي كيس على 4 كرات بيضاء تحمل الأرقام 0، 1، 1، 2 و أربع كرات حمراء تحمل الأرقام

1ن

نسحب عشوائيا في ان واحد 3 كرات من الكيس.

أحسب احتمال الحوادث التالية:

$$\ll$$
 ثلاث کــرات مــن نفس اللون A

$$\ll$$
 ثلاث کرات تحمل نفس الرقم $\gg B$

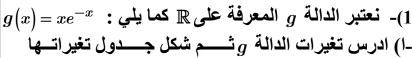
$$\infty$$
 شنی مثنی ∞ شنی مثنی ∞ ∞

ليكن المتغير العشوائي
$$X$$
 الذي يرفق بكل سحبة عدد

الكرات المسحوبة التي تحمل الرقـم 1

E(X) عرف قانون احتمال المتغير العشوائي X ثـم احسب املـه الرياضياتي

التمرين الرابع ($\frac{06}{100}$ نقطط): المعرفة h المعرفة المنحنى المقابل هو التمثيل البياني (C_h) للدالة على \mathbf{R} المستوي $\mathbf{h}(x) = 1 + xe^{-x} - e^x$ على المستوي المنسوب الى المعلم المتعامد و المتجانس $(o; \vec{i}, \vec{j})$.



$$lpha$$
 بين ان المعادلة $g(x)=-rac{1}{2}$ تقبل حالا وحيدا ب

$$e^{lpha}=-2lpha$$
 :حيث $-0.4 \prec lpha \prec -0.3$

$$f(x) = rac{x\left(x + e^x
ight)}{e^{2x}}$$
 دالة معرفة على π كما يلي: f_{-2}

 $\left(0; \overrightarrow{i}, \overrightarrow{j}
ight)$ و ليكن $\left(C_{f}
ight)$ تمثيلها البياني في المستوي المنسوب الى معلم متعامد ومتجانس

$$\lim_{x o -\infty} f(x)$$
 و $\lim_{x o +\infty} f(x)$ احسب (۱-1)

f'(x)=g'(x)igl[1+2g(x)igr] و $f(x)=g(x)+igl[g(x)igr]^2$: فان f(x)=g'(x) عدد حقيقي g(x)=g'(x)ج) ادرس اتجاه تغير الدالة f شكل جدُولَ تغير اتها

$$f(lpha)=-rac{1}{4}$$
:نین ان $-(2)$

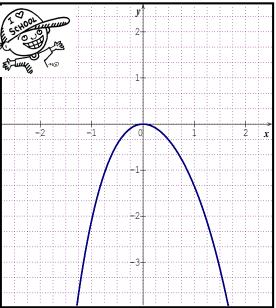
المعدومــة A المنحنى C_f عند النقطــة A المعدومــة A المعدومــة المعدومــة المعدومــة

$$f(x)-x=g(x)\cdot h(x)$$
 ب)- تحقق انه مــن اجل کل عـــدد حقیقی فـــان:

$$(T)$$
 و (C_f) استنتج الوضعية النسبية لــ (C_f

$$(T)$$
انشىء كل مــن المنحنى (C_f) و المماس (1-4

 $e^xig(x-me^xig)+x^2=0$ بـ)- ناقش بيانيا و حسب قيم الوسيط الحقيقي m عدد حلول المعادلة:



⊞حل التمرين الاول (05)

ا) التحقق ان العددين وق 63 اوليان فيما بينهما

PGCDig(63;5ig)=1 باستعمال خوارزمية اقليدس نجد ان

		1	1	2
63	5	3	2	1
	3	2	1	0

تصحيح اختبار الفصل الثاني لشعبة تقنى رياضي 2019/2018

اثبات ان المعادلة (E)تقبل حلولا $\dots PGCD(63;5)/159$

 $x_0+y_0=-3$: نعيين الحل الخاص $ig(x_0;y_0ig)$ للمعادلة الخي يحقق ($x_0;y_0ig)$

لدينا: $x_0 + y_0 = -3 - x_0$ معناه على $x_0 + y_0 = -3$ و بالتعويض نحصل على

 $y_0 = -6$: أي $x_0 = 3$ أي $x_0 = 3$ أي $x_0 = 174$ أي $x_0 = 15$ أي $x_0 = 15$

 $\left(x_{0};y_{0}
ight)=\left(3;-6
ight)$ ومنه الحل الخاص

:(E) مستنتاج حلول ا

$$63\left(x-3
ight)=5\left(-6-y
ight)$$
 لدينا $\begin{cases} 63x+5y=159 \ 63\left(3
ight)+5\left(-6
ight)=159 \end{cases}$

 $k\in\mathbb{Z}$ مع y=-63k-6 و x=5k+3 مع $|13x+y-33| \prec 4$: تعيين كل الثنائيات (x;y) حلول المعادلة ال(E)

لدينا $4 \prec 4$ وبالتعويض نحصل على $|k| \prec 2$ معناه: $|k| \prec 2$ معناه: $|k| \prec 2$

(3;-6) (8;-69) (-2;-57): الثنائيات

لدينا: $a=\overline{5lpha 0lpha}^7$ عناه : $a=\overline{5lpha 0lpha}^7$ ومن جهة اخرى

a=630eta+125: ومنه $a=\overline{eta 10eta 0}^5$

63eta - 5lpha = 159 أي: 630eta + 125 = 50lpha + 1715 مع

 $0 < eta \prec 5$ و $0 < lpha \prec 7$

a+4=2019: ومنه نجد ان lpha=6 و lpha=6

5 القسمة الاقليدية للعسدد 3^n على 3^n

 $oxed{3^4 \equiv 1}[5] \quad oxed{3^3 \equiv 2}[5] \qquad oxed{3^2 \equiv 4}[5] \qquad oxed{3^1 \equiv 3}[5] \quad oxed{3^0 \equiv 1}[5]:$ لدينا

 $3^{4k+2} \equiv 4[5] \ 3^{4k+1} \equiv 3[5] \quad 3^{4k+3} \equiv 2[5] \ 3^{4k} \equiv 1[5]$ ومنه

ب)-عين قيم العدد الطبيعي : 1

n=4k+1 : كدينا: $3^n\equiv 3$ معناه: $3^n\equiv 3^n=3$ معناه: $3^n\equiv 3^n=3$

 $n \in \{45; 57\}$: ومنه: $8.5 \prec k \prec 16$ ومنه: $35 \prec n \prec 65$ وكن

🕮 حل التمرين الثاني : <u>05ن)</u>

 $U_n \succ 4$ اثبت انه مــن اجل کل عــدد طبیعي n فــان - (ا

مرحلة التحقق من اجل n=0 لدينا $n=4e^3$ و $U_0=4e^3$ و محققة مرحلة البر هنة

نفرض ان $U_n \succ 4$ محققة (فرضية التراجع)ونبر هن ان $U_{n+1} \succ 4$ محققة كذلك نفرض ان $U_n \succ 4$

$$U_{n+1} \succ$$
 4 دينا $U_n \succ 4$ دينا $U_n \succ 4$ دينا $U_n \succ 4$ دينا $U_n \succ 4$ دينا يغير المتتالية $U_n \succ 4$ دد اتجاه تغير المتتالية $U_n \succ 4$

لدينا
$$egin{pmatrix} U_n & U_n = rac{U_n \left(4 - U_n
ight)}{2 \sqrt{U_n} + U_n} \end{bmatrix}$$
 ومنه ومنه تماما

الاستنتاج (U_n) متناقصة تماما و محدودة من الاسفل فهي متقاربة

ا)- اثبات ان (V_n) متتالیة هندسیة

$$V_0=3$$
 و منه (V_n) هندسية اساسها $q=rac{1}{2}$ و $V_{n+1}=rac{1}{2}V_n$ و برياد الله عبارة كل مــن V_n و V_n بدلالـــة v_n

$$\lim_{x o +\infty} {U}_n = 4$$
 ${U}_n = 4 imes e^{rac{3}{2^n}}$ و ${V}_n = 3{\left[rac{1}{2}
ight]}^n$

 $S_n = 6 \Big(1$ - $e^{-2020 \ln 2} \Big)$: تعيين العــدد الطبيعي n الـذي يحقق (١-

$$n=2019$$
 ومنه $S_n=6iggl(1-iggl(rac{1}{2}iggr)^{n+1}iggr)$ ليينا

$$t_n=12iggl[1-iggl(rac{1}{4}iggr)^{n+1}iggr]$$
: t_n عبارة المجموع

حل التمرين الثالث (04):

[1-1-2-2] و فكرات بيضاء [0-1-1-2] و فكرات حمراء [0-1-1-2] .

طريقة السحب سحب 3 كرات دفعة واحدةتوفيقة

 ${
m C}_8^3=56$: عدد الحالات الممكنة

أحسب احتمال الحوادث

 \ll ثلاث كرات من نفس اللون \gg A

$$Pig(Aig) = rac{1}{7}$$
: ومنه $ext{C}_4^3 + ext{C}_4^3 = 8$ ومنه عدد الحالات الملائمة

 \ll ثلاث کـرات تحمل نفس الرقــم $\gg B$

$$P\left(B
ight) = rac{5}{56}$$
: ومنه $\mathrm{C}_3^3 + \mathrm{C}_4^3 = 5$: عدد الحالات الملائمة

 ∞ مثنی مثنی ∞ مثنی مثنی ∞

$P(C) = \frac{3}{14}$ ومنه	$\mathrm{C}_1^1\! imes\!\mathrm{C}_3^1\! imes\!\mathrm{C}_4^1=12$: عدد الحالات الملائمة
----------------------------	--

قيم المتغير العشوائي: 0 ; 1 ; 2 ; 3 قيم المتغير العشوائي X:

$x^{}_i$	0	1	2	3
$P(X=x_i)$	$\frac{4}{56}$	$\frac{24}{56}$	$\frac{24}{56}$	$\frac{4}{56}$

 $E\left(X
ight)=rac{3}{2}$ حساب الامل الرياضياتي:

ادرس تغیرات الدالیة g شمل جدول تغیراتها ا

$$\lim_{x o +\infty} gig(xig) = 0$$
 $\lim_{x o -\infty} gig(xig) = -\infty$: لدينا

x=1 :معناه g'(x)=0 و $g'(x)=(1-x)e^{-x}$ معناه التغير:

\boldsymbol{x}	$-\infty$		1	$+\infty$
g'(x)		+	0	

جدول التغيرات:

x	$-\infty$	-	1		$+\infty$
g'(x)		+	0	_	
g(x)	$-\infty$	/	$\frac{1}{e}$		0

$$-0.4 \prec lpha \prec -0.3$$
 جيث $lpha \prec -0.3$ تقبل حــلا وحيدا $lpha \prec -0.3$ جيث $g(x)=-rac{1}{2}$ عبد المعدلة: $g(-0.4)pprox -0.59$ و $[-0.4;-0.3]$ المجال $g(-0.4)\prec -0.5\prec g(-0.3)$ و $g(-0.3)pprox -0.40$ و وكذلك: $g(-0.3)\prec -0.5\prec g(-0.3)$ و كذلك: $e^lpha=-2lpha$ المحقق ان: $e^lpha=-2lpha$ ومنه $2lpha e^{-lpha}=e^lpha=-2$ ومنه $2lpha e^{-lpha}=e^lpha=-2$ ومنه $2lpha e^{-lpha}=-2$ ومنه $2lpha e^{-lpha}=-2$

$$\lim_{x o -\infty} fig(xig) = -\infty$$
 و $\lim_{x o +\infty} fig(xig) = 0$: النهايات $fig(xig) = gig(xig) + ig[gig(xig)ig]^2$. فان $\lim_{x o +\infty} fig(xig) = 0$ بـ)- التحقق انه من اجل كل عدد حقيقي $\lim_{x o +\infty} fig(xig)$

لدينا
$$g(x)+igl[g(x)igr]^2=xe^{-x}+igl(xe^{-x}igr)^2$$
 لدينا $f(x)=xe^{-x}+x^2e^{-2x}$ ي $g(x)+igl[g(x)igr]^2=xe^{-x}+x^2e^{-2x}$ بتطبيق قواعد الاشتقاق نجد ان $f'(x)=g'(x)+2g'(x)g(x)$ ومنه

f'(x) = g'(x) [1 + 2g(x)]

ج)-ادرس اتجاه تغیر الدالــة f شکیل جــدول تغیراتها

x=lpha او x=1: معناه f'(x)=0

الاشارة:

\boldsymbol{x}	$-\infty$	α	1	$+\infty$
f'(x)	_	0 +	0	_

جدول التغيرات:

x	$-\infty$	lpha		1	+∞
f'(x)		0	+	0	
f(x)	$+\infty$			_ 1	
		$f(\alpha)$	/		
	-	- ()			0

$$f\!\left(lpha
ight)\!=\!-rac{1}{4}$$
: اثبات ان -(2

$$ig(T\):y=x$$
 : $ig(Tig)$ معادلة المماس -(۱-3

$$fig(xig)-x=gig(xig)\cdot hig(xig)$$
ب)- التحقق انه من اجلُ كلُ عــدد حقيقي فُـــان:

$$f\left(x
ight)-x=x^{2}e^{-2x}+xe^{-x}-x$$
 لاينا $f\left(x
ight)-x=\left(x+xe^{x}-xe^{2x}
ight)e^{-2x}$ لدينا

$$f(x)-x=g(x)\cdot h(x)$$
: ومنه $f(x)-x=xe^{-x}\Big(1+xe^{-x}-e^x\Big)$ ومنه

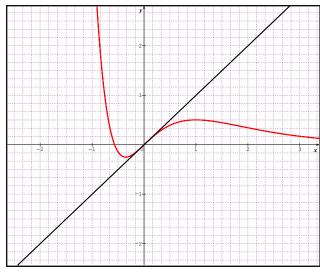
$$(T)$$
 و (C_f) استنتج الوضعية النسبية لــ (C_f

$$(T)$$
 فوق (C_f) اذاکسان: $x \prec 0$ فوق

$$(T)$$
 اذاکان $x=0$ فان: (C_f) يقطع $x=0$

$$(T)$$
 تحت (C_f) نحت $x \prec 0$ اذاکسان:

$$(T)$$
انشىء كل مــن المنحنى (C_f) و المماس (۱-4



ب)- المناقشة البيانية حسب قيم الوسيط الحقيقي m عدد حلول المعادلة:

	$e^x\Big(x-me^x\Big)+x^2=0$	
	$f(x)=m$ معنساه $e^{x}\Big(x-me^{x}\Big)+x^{2}=0$ لدينا	
	اذاکسان: $m \prec -rac{1}{4}$: لا توجسد حلول	
	اذاکان: $m=-rac{1}{4}$: يوجد حل وحيد	
	اذاکـــان : $0 imes m imes 1$: يوجــــد حــــلان اذاکــــان : $0 imes m imes f(1)$: يوجد ثلاث حلول	
	اذاکان: $m=f(1)$: يوجد د حالن $m=f(1)$: اذاکان $m > f(1)$: يوجد د حال وحيد	