الجمهورية الجزائرية الديمقراطية الشعبية

مديرية التربية لولاية بسكرة

وزارة التربية الوطنية

اختبار الثلاثي الثاني (مارس 2019)

ثانوية رشيد رضا العاشوري

المستوى: ثالثة تقني رياضي

الهـدة: 3 ساعات

<u>اختبار في مادة الرياضيات</u>

التمرين الأول (4.5):

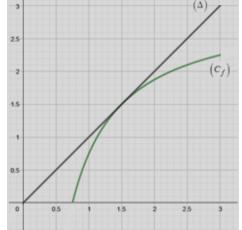
$$u_{n+1}=3-rac{9}{4u_n}$$
 ، n ومن أجل كل عدد طبيعي $u_0=3$: $u_0=3$ طبيعي المتتالية العددية المعرفة على $u_0=3$

الشكل المقابل هو تمثيل بياني للدالة f المعرفة على المجال $f(x) = 3 - \frac{9}{4x}$ والمستقيم (Δ) ذو y = x المعادلة y = x

1) أ) على الوثيقة المرفقة حامل محور الفواصل الحدود:

. و u_3 و u_2 ، u_1 ، u_0

- . (u_n) أعط تخمينا حول اتجاه تغير وتقارب المتتالية
- $u_n > \frac{3}{2}$: n يرهن بالتراجع على انه من اجل كل عدد طبيعي n
- د) أدرس اتجاه تغير المتتالية (u_n) واستنتج انها متقاربة ، عين نهايتها.



نعتبر المتتالية العددية $\left(v_{\scriptscriptstyle n}\right)$ المعرفة على $\left(2\right)$

$$v_n = \frac{2}{2u_n - 3}$$

- . $\frac{2}{3}$ اساسها المتتالية (v_n) حسابية أساسها (أ
- $u_n = \frac{3}{2} \left(\frac{n+2}{n+1} \right)$ ب أكتب v_n بدلالة n ثم استنتج أن
- . $S_n = u_n v_n + u_{n+1} v_{n+1} + u_{n+2} v_{n+2} + \dots + u_{n+2019} v_{n+2019}$: المجموع : (3

التمرين الثاني (4.5):

3x-5y=1 : التالية (x;y) المعادلة ذات المجهول (x;y) التالية x

- . $\ln \left(x_0-y_0\right)=0$: عين $\left(x_0;y_0\right)$ حل المعادلة $\left(E\right)$ الذي يحقق (1 $\left(E\right)$ حلول المعادلة $\left(E\right)$.
 - $\begin{cases} \lambda = 3b + 2 \\ \lambda = 5a + 3 \end{cases}$: و a عددان صحيحان و λ العدد الذي يحقق a (2

(E) أ- بين أن (b;a) حل للمعادلة.

. 15 عين باقى القسمة الاقليدية للعدد λ على

$$.\begin{cases} n = -1[3] \\ n = 3[5] \end{cases} : عدد طبيعي يحقق $n = 3$ (3)$$

- $n \prec 2019$ عين أكبر قيمة للعدد $n \prec 2019$
- . 6 ماسه غداد أساسه $\overline{\beta 3\alpha 03}$ عدد طبيعي يكتب N
 - (E) عين α و β حيث الثنائية $(\alpha; \beta)$ حل للمعادلة أ-
 - ب- أكتب N في النظام العشرى .

<u>التمرى الثالث (4.5):</u>

و و و آربعة حمراء مرقمة 1 ، 1 و 2 و و اثنان 1 ، 2 و 3 و اثنان 1 ، 3 و 4 و اثنان خضراء مرقمة 4 ، 4 و 4 و 4 و اثنان خضراء مرقمة 4 و 4 و 4 و 4 و 4 و 4 و اثنان خضراء مرقمة 4 و 4

🖘 نسحب عشوائيا على التوالي بدون ارجاع 3 كريات من هذا الكيس.

- 1) أحسب عدد السحبات الممكنة .
- 2) أحسب احتمال الحوادث التالية:
- أ- الحدث A: "سحب كرية من كل لون ".
- ب- الحدث B: "سحب كريات من نفس اللون " .
- ." حمل نفس الرقم ": C الحدث ": C
- ." سحب كريات تحمل نفس الرقم و مختلفة في اللون D: سحب كريات تحمل نفس الرقم و مختلفة في اللون

نسحب من الكيس السابق كريتين في آن واحد ونعتبر المتغير العشوائي X الذي يرفق بكل سحبة مجموع الرقمين اللذان تحملانهما الكريتين المسحوبتين .

- X عين قيم المتغير العشوائى X
 - X حدد قانون احتمال X
- X أحسب كل من الامل الرياضياتي والتباين والانحراف المعياري للمتغير العشوائي X

التمرين الرابع (6.5):

 $g(x)=x^2+2-2\ln(x)$: كمايلى والدالة العددية المعرفة على $g(x)=x^2+2-2\ln(x)$

- $\lim_{x \to +\infty} g(x) = \lim_{\stackrel{>}{t \to 0}} g(x)$
- ك أدرس اتجاه تغير الدالة g ، وشكل جدول تغيراتها .
 - .]0;+ ∞ [على على عدد اشارة g(x)

المستوي وليكن $f(x) = -x + e - 2\frac{\ln(x)}{x}$ إلى المعرفة على $f(x) = -x + e - 2\frac{\ln(x)}{x}$ إلى المعرفة على $f(x) = -x + e - 2\frac{\ln(x)}{x}$ وليكن $f(x) = -x + e - 2\frac{\ln(x)}{x}$ المنسوب الى المعلم المتعامد والمتجانس $f(x) = -x + e - 2\frac{\ln(x)}{x}$ وليكن $f(x) = -x + e - 2\frac{\ln(x)}{x}$ وليكن $f(x) = -x + e - 2\frac{\ln(x)}{x}$ المنسوب الى المعلم المتعامد والمتجانس $f(x) = -x + e - 2\frac{\ln(x)}{x}$

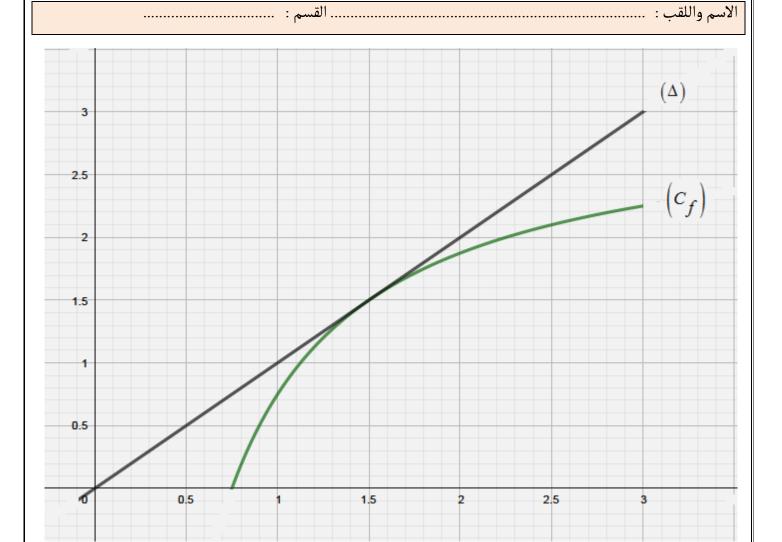
- $\lim_{x \to +\infty} f(x) = \lim_{x \to 0} f(x)$
- $f'(x) = \frac{-g(x)}{x^2}$: فان $]0;+\infty[$ فان عدد حقيقي x من عدد حقيقي \mathbb{Z}
- .]0;+ ∞ [على f على ، f'(x) استنتج اشارة f'(x) على . f'(x)

- (C_f) فا المعادلة y=-x+e مقارب مائل للمنحنى (Δ) فا المعادلة بين ان المستقيم (Δ). (Δ) والمستقيم (Δ) والمستقيم (Δ)
- . يو المائل (Δ) . ثم جد معادله له . يو المستقيم المقارب المائل (Δ) . ثم جد معادله له . \Box
- بين ان الهنحنى (C_f) يقطع حامل محور الفواصل في نقطة فاصلتها α حيث (C_f) على (C_f) على المنحنى على المنحنى أستنتج اشارة الفواصل في نقطة فاصلتها المنحنى المنحنى أستنتج المنحنى المنحنى أستنتج المنحنى ال
 - $.ig(C_fig)$ والمنحنى ig(Tig) والمماس ($\Deltaig)$ والمنحنى أرسم المستقيم
 - . $x(e-m) = \ln(x^2): x$ ناقش بيانيا وحسب قيم الوسيط الحقيقي m عدد حلول المعادلة ذات المجهول \otimes

مع تمنياتنا لكم بالتوفيق

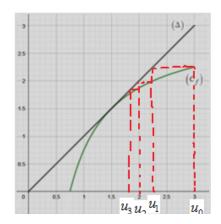
الصفحة 3/3

الوثيقة المرفقة:



<u>التمرين الأول :</u>

أ) تمثيل الحدود على حامل محور الفواصل:



ب) من تمثيل الحدود يبدو أن المتتالية (u_n) متناقصة تماما ومتقاربة

$$u_n \succ \frac{3}{2}: n$$
 ج $)$ البرهان بالتراجع ، من اجل كل عدد طبيعي $u_n \succ \frac{3}{2}: n=0$ من اجل $u_0 = 3 \succ \frac{3}{2}: n=0$

 $u_n > \frac{3}{2}$ نفرض أن الخاصية صحيحة من أجل n+1 (أي n+1) ونبرهن على صحتها من أجل n+1 (أي n+1)

$$\frac{1}{4u_n} \prec \frac{1}{6}:$$
 لدينا $\frac{1}{4u_n} \prec \frac{1}{6}:$ تكافئ $\frac{4u_n}{6} > 6:$ تكافئ $\frac{-9}{4u_n} \succ \frac{-3}{2}:$ تكافئ $\frac{-9}{4u_n} \succ \frac{-9}{6}:$ تكافئ $\frac{3}{2}:$ تكافئ $\frac{3}{2}:$

 $: (u_n)$ دراسة اتجاه تغير المتتالية (د

$$u_{n+1} - u_n = 3 - \frac{9}{4u_n} - u_n$$

$$= \frac{12u_n - 9 - u_n (4u_n)}{4u_n}$$

$$= \frac{-4u_n^2 + 12u_n - 9}{4u_n}$$

$$\Delta = 12^2 - 4 \times (-4) \times (-9) = 0$$
 : Δ حساب المميز $x_0 = \frac{-12}{-8} = \frac{3}{2}$: ومنه $u_n > \frac{3}{2} = -4u_n^2 + 12u_n - 9 < 0$ فان $u_n > \frac{3}{2} = 4u_n > 0$ ومنه المتتالية $u_n > 0$ متناقصة تماما على $u_n > 0$.

استنتاح تقارب المتتالية:

بها ان (u_n) متناقصة تهاما ومحدودة من الأسفل بالعدد

. فهي متقاربة $\frac{3}{2}$

l يوجد عدد حقيقي اي ان المتتالية $\left(u_n\right)$ متقاربة فانه يوجد عدد حقيقي ا $\lim_{n \to +\infty} u_{n+1} = \lim_{n \to +\infty} u_n = l$: حيث

 $l \neq 0$ حيث $3 - \frac{9}{4l} = l$: لنا $3 - \frac{9}{4l} = l$: تكافئ $3 - \frac{9}{4l} = l$: تكافئ

 $\Delta = (-12)^2 - 4 \times (4) \times (9) = 0$: $\Delta = (-12)^2 - 4 \times (4) \times (9) = 0$: $\Delta = (-12)^2 - 4 \times (4) \times (9) = 0$: $\Delta = (-12)^2 - 4 \times (4) \times (9) = 0$: $\Delta = (-12)^2 - 4 \times (4) \times (9) = 0$: $\Delta = (-12)^2 - 4 \times (4) \times (9) = 0$: $\Delta = (-12)^2 - 4 \times (4) \times (9) = 0$: $\Delta = (-12)^2 - 4 \times (4) \times (9) = 0$: $\Delta = (-12)^2 - 4 \times (4) \times (9) = 0$: $\Delta = (-12)^2 - 4 \times (4) \times (9) = 0$: $\Delta = (-12)^2 - 4 \times (4) \times (9) = 0$: $\Delta = (-12)^2 - 4 \times (4) \times (9) = 0$: $\Delta = (-12)^2 - 4 \times (4) \times (9) = 0$: $\Delta = (-12)^2 - 4 \times (4) \times (9) = 0$: $\Delta = (-12)^2 - 4 \times (4) \times (9) = 0$: $\Delta = (-12)^2 - 4 \times (4) \times (9) = 0$: $\Delta = (-12)^2 - 4 \times (4) \times (9) = 0$: $\Delta = (-12)^2 - 4 \times (4) \times (9) = 0$: $\Delta = (-12)^2 - 4$

يعتبر المتتالية العددية (v_n) المعرفة على (2) $v_n = \frac{2}{2u-3}$

: $\frac{2}{3}$ البرهان ان المتتالية (v_n) حسابية أساسها (v_n) (v_n) حسابية (v_n) حسا

 $r=rac{2}{3}$ ومنه (v_n) متتالية حسابية أساسها v_n : n يدلالة v_n عباب v_n عباب الحد الاول : $v_0=rac{2}{2u_n-3}=rac{2}{2 imes 3-3}=rac{2}{3}$

$$3(x-2)-5(y-1)=0:$$
 تكافئ $\begin{cases} 3x-5y=1 \\ 3(2)-5(1)=1 \end{cases}$ تكافئ $3(x-2)=5(y-1):$ تكافئ $(y-1)=5(y-1):$ لنا 3 يقسم $(y-1)=5(y-1)$ ولكن 3 اولي مع 5 أي حسب مبرهنة $k\in\square$ مع $y-1=3k$ مع $y-1=3k$ مع $y=3k+1:$ ومنه $y=3k+1:$ ومنه $y=3k+1:$ ومنه $y=3k+1:$ ومنه $y=3k+1:$ مع $y=3k+1:$ ومنه $y=3k+1:$ ومنه $y=3k+1:$ مع $y=3k+1:$ ومنه $y=3k+1:$ مع $y=3k+1:$ ومنه $y=3k+1:$ مع $y=3k+1:$ ومنه $y=3k+1:$ مع $y=3k+1:$

$$.\begin{cases} n \equiv -1[3] \\ n \equiv 3[5] \end{cases} : عدد طبيعي يحقق $n = 3$$$

$$n = 2019$$
 عين اكبر قيمة للعدد $n = 2$ عين اكبر قيمة للعدد $n = 2$ $n = 2$ $n = 3$ $n = 15q + 8$ $n = 15q + 8$ $n = 15q + 8$ $n = 2019$ $n = 134.06$ $n = 2019 + 3$ $n = 2018$ $n = 2018$ نجد $n = 2018$ نجد $n = 2018$

$$v_n = v_0 + nr$$
 : لدينا
$$v_n = \frac{2}{3} + \frac{2}{3}n$$

$$= \frac{2+2n}{3}$$
 : هومنه:

$$\frac{1}{v_n} = \frac{2u_n - 3}{2} : \frac{1}{v_n} = \frac{2u_n - 3}{2} : \frac{1}{v_n} = \frac{2u_n - 3}{2} : \frac{1}{v_n} = \frac{2u_n - 3}{2u_n - 3} : \frac{2}{v_n} = \frac{2}{2u_n - 3} : \frac{2}{v_n} = \frac{2}{2u_n - 3} : \frac{2}{v_n} = \frac{2}{v_n} + \frac{3}{2} : \frac{2}{v_n} = \frac{3}{2 + 2n} + \frac{3}{2} : \frac{3}{2 + 2n} + \frac{3}{2} : \frac{3}{2 + 2n} = \frac{3}{2 + 2n$$

3) حساب المجموع:

 $u_n v_n = \frac{3}{2} \left(\frac{n+2}{n+1} \right) \times \frac{2+2n}{3}$ $= \frac{3}{2} \left(\frac{n+2}{n+1} \right) \times \frac{2(n+1)}{3}$ = n+2: ω

$$S_n = u_n v_n + u_{n+1} v_{n+1} + u_{n+2} v_{n+2} + \dots + u_{n+2019} v_{n+2019}$$

$$= \frac{n + 2019 - n + 1}{2} \left(n + 2 + \left(n + 2019 \right) + 2 \right)$$

$$= \frac{2020}{2} \left(2n + 2023 \right) \quad : (x_0; y_0) \quad : (x_0; y_0) \quad : (x_0; y_0) \quad : (x_0 - y_0) = 0 \quad : (x_0 - y_0) \quad : ($$

- عدد طبیعي یکتب $\overline{\beta3\alpha03}$ في نظام تعداد N (4 أساسه 6 .
 - $(\alpha; \beta)$ و $(\alpha; \beta)$ و $(\alpha; \beta)$ على (E) على المعادلة
 - : حل للمعادلة (E) معناه حل للمعادلة عناه

$$k \in \square$$
 as
$$\begin{cases} \alpha = x = 5k + 2 \\ \beta = y = 3k + 1 \end{cases}$$

 $0 \prec \beta \le 5$ و $0 \le \alpha \le 5$ و $0 \le \alpha \le 5$

$$0 \prec 3k + 1 \leq 5$$
: لدينا $\beta \leq 5 \leq 3k + 1 \leq 5$

$$\frac{-1}{3} \prec k \leq \frac{4}{3}$$
 : ومنه $k \leq \frac{5-1}{3} \prec k \leq \frac{5-1}{3}$: ومنه $k \leq 1$ أو $k \leq 0$:

- . اذا كان k=0 فان $\alpha=2$ و k=0 مقبولة .
- اذا كان k=1 فان $\alpha=7$ و $\alpha=7$ مرفوضة $\alpha:\beta$ لان $\alpha:\beta=0$ ومنه توجد ثنائية وحيدة $\alpha:\beta=0$ حل للمعادلة $\alpha:\beta=0$ هي : $\alpha:\beta=0$ حل للمعادلة $\alpha:\beta=0$ في النظام العشرى : $\alpha:\beta=0$

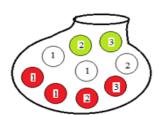
$$N = \overline{\beta 3\alpha 03}$$

$$= 3 + 0 \times 6^{1} + \alpha \times 6^{2} + 3 \times 6^{3} + \beta \times 6^{4} : \omega$$

N = 2019 : N = 2019 . N = 2019

<u>التمرين الثالث :</u>

 $_{\rm I}$ - كيس يحوي تسع كريات (لا نفرق بينها باللمس) ، ثلاثة بيضاء مرقمة 1 ، 1 و 2 و أربعة حمراء مرقمة 1 ، 1 و 2 و اثنان خضراء مرقمة 2 و 3 .



 $=651+36\alpha+1296\beta$

تسحب عشوائيا على التوالي بدون ارجاع 3 كريات من هذا الكيس (ترتيبة).

- $A_9^3 = 504$: حساب عدد السحبات المهكنة (3
 - 4) حساب احتمال الحوادث التالية:
- ج- الحدث A: "سحب كرية من كل لون ". معناه: " 3 كريات مختلفة في اللون " أى: •••••

$$P(A) = \frac{A_4^1 \times A_3^1 \times A_2^1 \times 6}{A_3^2} = \frac{2}{7}$$
 : ومنه

- الحدث B: "سحب كريات من نفس اللون " . أي :

بالنسبة للخضراء فعددها غير كاف.

$$P(B) = \frac{A_4^3 + A_3^3}{A_0^3} = \frac{5}{84}$$

." خ- الحدث C : "سحب كريات تحمل نفس الرقم الخمين فقط بالأرقام لا بالألوان .

بالنسبة للعدد 3 فعدد الكرات التي تحمل الرقم 3 غير كافية .

$$P(C) = \frac{A_4^3 + A_3^3}{A_9^3} = \frac{5}{84}$$
 : ومنه

د- الحدث D: "سحب كريات تحمل نفس الرقم و مختلفة في اللون " (هنا نهتم باللون والرقم معا).

ومنه نجد هذه السحبة فقط: 222

$$P(D) = \frac{A_1^1 \times A_1^1 \times A_1^1 \times 6}{A_2^3} = \frac{1}{84}$$

الكيس السابق كريتين في آن واحد ونعتبر المتغير العشوائي X الذي يرفق بكل سحبة مجموع الرقمين اللذان تحملانهما الكريتين المسحوبتين .

 $X \in \{2;3;4;5;6\}$: X عين قيم المتغير العشوائي $X \in \{2;3;4;5;6\}$: حدد قانون احتمال X:

$$P(X=2) = \frac{C_4^2}{C_9^2} = \frac{1}{6}$$

$$P(X=3) = \frac{C_4^1 \times C_3^1}{C_9^2} = \frac{1}{3}$$

$$P(X=4) = \frac{C_3^2 + C_4^1 \times C_2^1}{C_9^2} = \frac{11}{36}$$

$$P(X=5) = \frac{C_3^1 \times C_2^1}{C_9^2} = \frac{1}{6}$$

$$P(X=6) = \frac{C_2^2}{C_9^2} = \frac{1}{36}$$

$X = x_i$	2	3	4	5	6
$P(X=x_i)$	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{11}{36}$	$\frac{1}{6}$	<u>1</u> 36

6- حساب كل من الامل الرياضياتي والتباين والانحراف المعياري للمتغير العشوائي X:

الامل الرياضياتي:

$$E(X) = 2 \times \frac{1}{6} + 3 \times \frac{1}{3} + 4 \times \frac{11}{36} + 5 \times \frac{1}{6} + 6 \times \frac{1}{36}$$
$$= \frac{32}{9}$$

التباين:

$$V(X) = 2^{2} \times \frac{1}{6} + 3^{2} \times \frac{1}{3} + 4^{2} \times \frac{11}{36} + 5^{2} \times \frac{1}{6} + 6^{2} \times \frac{1}{36} - \left[E^{2}(X)\right]$$
$$= \frac{247}{18} - \left(\frac{32}{9}\right)^{2}$$
$$= \frac{175}{162}$$

الانحاف المعياري:

$$\sigma(X) = \sqrt{V(X)}$$
$$= \sqrt{\frac{175}{162}} \approx 1.04$$

<u>التمرين الرابع :</u>

$$\begin{cases} \lim_{x \to +\infty} g(x) = 0 + 2 - (-\infty) = +\infty \\ \lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} x \left(x + \frac{2}{x} - 2 \frac{\ln x}{x} \right) = +\infty \times (+\infty) = +\infty \end{cases}$$

g دراسة اتجاه تغير الدالة g

 $[0;+\infty[$ من اجل كل عدد حقيقى x من اجل كل عدد عقيقى

$$g'(x) = 2x - \frac{2}{x} = \frac{2x^2 - 2}{x}$$

اشارة المشتقة واتحاه تغيرها:

$$(x \succ 0)$$
 اشارة $g'(x)$ من اشارة $g'(x)$ من اشارة

$$\begin{cases} x=1\in \]0;+\infty[\\ y \end{cases}$$
 تکافئ $x^2=1:$ تکافئ $2x^2-2=0$ $x=-1\notin \]0;+\infty[$

ومنه :

x	0	1 +∞
g'(x)	-	+
اتجاه	متناقصية	منزايدة
تغير ۾	تماما	تماما

جدول تغيرات الدالة g

x	0 1			+∞
g'(x)	- ф)	+	
g(x)	+8	3		+∞

g(x) اشارة

 $g(x) \ge g(1):]0;+\infty[$ لدينا من اجل كل x من $g(x) \ge 0$. ومنه $g(x) \ge 0$ أي $g(x) \ge 0$

 $[0;+\infty]$ الدالة العددية المعرفة على f -II

$$f(x) = -x + e - 2\frac{\ln(x)}{x}$$

$$\lim_{\substack{x \to 0 \\ x \to 0}} f(x) = -0 + e - 2 \frac{\ln(0^+)}{0^+} = e - 2(-\infty) = +\infty$$

$$\lim_{x \to 0} f(x) = -\infty - 2 \times 0 = -\infty$$

 $]0;+\infty[$ من اجل أجل كل عدد حقيقي x من اجل أجل كل عدد فان :

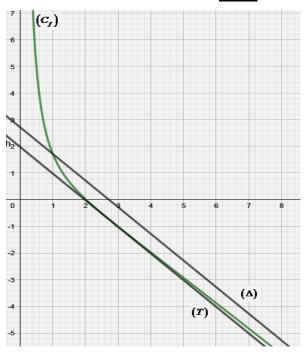
$$f'(x) = -1 + 0 - 2 \times \frac{\frac{1}{x} \times x - 1 \times \ln x}{x^2}$$
$$= -1 - 2 \times \frac{1 - \ln x}{x^2} = \frac{-x^2 - 2 + 2\ln x}{x^2}$$
$$= \frac{-g(x)}{x^2}$$

 \mathfrak{G} اشارة f'(x) : عكس اشارة g(x) أي من اجل $f'(x) \prec 0$: g(x) عدد حقيقي $f(x) \prec 0$: g(x) عدد حقيقي $f(x) \prec 0$: g(x) عدد حقيقي $f(x) \prec 0$:

	x	(0 +∞
f	'(x)		_
f	(x)		+∞

 $:(C_f)$ بيان أن (Δ) مقارب مائل للمنحنى (أ Φ) $\lim_{x \to +\infty} \left[f(x) - y \right] = \lim_{x \to +\infty} \left[-x + e - 2 \frac{\ln x}{x} - (-x + e) \right]$ $= \lim_{x \to +\infty} \left[-2 \frac{\ln x}{x} \right] = -2 \times 0 = 0$

الانشاء :

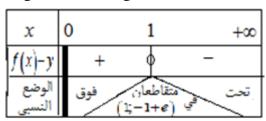


8 المناقشة السانية:

: تكافئ $x(e-m) = \ln(x^2)$ تكافئ $e-m = \frac{2\ln(x)}{x}$ تكافئ $x(e-m) = 2\ln(x)$ تكافئ $m-e = -\frac{2\ln(x)}{x}$: تكافئ $m = e - \frac{2\ln(x)}{x}$: تكافئ $-x+m = -x+e - \frac{2\ln(x)}{x}$: تكافئ f(x) = -x+m : ومنه f(x) = -x+m

- . اذا كان $m \in \left[-\infty; \frac{e^2-2}{e}\right]$ اذا كان -
- x = e يوجد حل هو : $m = \frac{e^2 2}{e}$ اذا كان -
 - . يوجد حلان : $m \in \left[\frac{e^2-2}{e}; e\right]$ يوجد حلان .
 - x=1 هو m=e اذا کان m=e
 - . اذا كان $e;+\infty$: $e \in e$

 (Δ) والمستقيم (C_f) والمستقيم (ب) دراسة الوضع النسبي للمنحى $f(x) - y = \frac{-2 \ln x}{x}$: ندرس اشارة الفرق عن اشارة لان $x \succ 0$ لان $-2 \ln x$ تكافئ : $-2 \ln x = 0$ الدينا : $-2 \ln x = 0$



يوازي (C_f) بيان انه يوجد مهاس (T) للهنحنى يوازي المستقيم المقارب المائل (Δ) :

$$\frac{-x^2 - 2 + 2\ln x}{x^2} = -1 :$$
تکافئ $f'(x) = -1$
: تکافئ $-x^2 - 2 + 2\ln x = -x^2 :$ تکافئ

.
$$x=e$$
: تكافئ : $1=1$ تكافئ : $-2+2\ln x=0$

ومنه يوجد مماس (T) للمنحنى (C_f) يوازي المستقيم $x\!=\!e$ المقارب المائل (Δ) عند النقطة ذات الفاصلة

(T) تعيين معادلة للمهاس

$$(T): y = f'(e)(x-e) + f(e)$$

$$= -1(x-e) - \frac{2}{e}$$

$$= -x + e - \frac{2}{e}$$

$$= -x + \frac{e^2 - 2}{e}$$

لدينا f دالة مستمرة ومتناقصة تماما على المجال $f(2.1) \approx -0.08$ ، $f(2) \approx 0.02$ ولدينا $f(2) \times f(2.1) \prec 0$:

ومنه حسب مبرهنة القيم المتوسطة المنحنى (C_f) يقطع عامل محور الفواصل في نقطة فاصلتها α حيث α عرب α حيث .

f(x) اشارة: f(x)

x	0		+∞	
f(x)		+	_	