قمارين فمو دُجية في الإحتمالات من كتابة: الأستاذناعم محمد

ال يحتوي كيس على 4كرات صفرا، و 8 كرات خضرا، لا نفرق بينها عند اللمس ، نسحب بطريقة عشوائية كرتان من الكيس على التوالى دون إرجاع .

1/ أرسم شجرة الإحتمالات التي تنمذج الوضعيّة السّابقة

2/ أحسب إحتمال الحوادث التّاليّة:

A: الحصول على كرة صفراء ثمّ كرة خضراء.

B: الحصول على كرة خضراء ثمّ كرة صفراء.

<u>C</u> الحصول على كرتين من لونين مختلفين .

2 تتكوّن مجموعة أشخاص من ثمانيّة رجال و أربع نساء من بينهم رجل واحد إسمه ابراهيم و امرأة واحدة إسمها فاطمة ، نريد تكوين لجنة من ثلاثة أعضاء لهم نفس المهام 1/ أحسب إحتمال الحوادث التّاليّة:

. تكوين لجنة تضم ثلاث رجال A

B: تكوين لجنة تضم رجل ؛ امرأتين .

تكوين لجنة تضم ابراهيم .

D: تكوين لجنة تضم ابراهيم أو فاطمة .

2/ ليكن المتغيّر العشوائي X الذي يرفق بكلّ اختيار بعد د
 الرّجال في اللجنة المكوّنة .

أً) عيّن القيم الممكنة لـ X . و عيّن قانون إحتماله .

ب) أحسب الأمل الرّياضي ا التباين للمتغيّر العشوائي X.

لتحديد سؤالي اختبار شفوي خاص بمسابقة توظيف التصحب المترشّح عشوائيا على التّوالي دون إرجاع بطاقتين من صندوق يحوي 10 بطاقات: 8 منها خاصة بما دة الرّياضيات و 2 خاصة بما دة اللغة الفرنسيّة.

ألتكن الحادثة A: سحب بطاقتين تتعلّق باللغة الفرنسية
 و الحادثة B: سحب بطاقتين تتعلّق بما دتين مختلفتين
 لا يمكن التّمييز بين البطاقات)

. $P(B) = \frac{16}{45}$ و $P(A) = \frac{1}{45}$: ابيّن أنّ

2/ ليكن X المتغيّر العشوائي الذي يرفق بكلّ سحبة بعد د
 البطاقات المتعلّقة بما دة اللغة الفرنسيّة .

أ) عيّن القيم الممكنة لـ X .

ب) عيّن قانون إحتمال المتغيّر العشوائي X.

ج) أحسب الأمل الرّياضي و التّباين للمتّغيّر العشوائي X.

4 يحتوي كيس على 9 كريات لا نفرّق بينها عند اللمس

؛ ثلاث منها حمراء و أربع خضراء ؛ و كرتان بيضاوان ؛ نسحب عشوائيا كرتين على التّوالي دون إرجاع .

1/ عيّن عدد الحالات الممكنة للسّحب.

2/ نعتبر الحدثتين A و B حيث (A: سحب كرة بيضاء في المرّة الأولى ؛ B: سحب كرتين من نفس اللون .)

 $.P(A) = \frac{2}{9}$: آل بيّن أنّ

. $P(\overline{B})$ أحسب إحتمال B ثمّ استنتج

3/ علما أنّ الكرة المسحوبة الأولي بيضاء ؛ أحسب إحتمال سحب كرتين من لونين مختلفين .

X ليكن المتغيّر العشوائي X الذي يساوي عدد الكرات البيضاء المسحوبة X أنقل جدول قانون إحتمال X X ثمّ

5 يحتوي صندوق U_1 على 7 كريات منها أربع حمراء و ثلاث خضراء (لا نفرّق بينها عند اللمس) ؛ و صندوق U_2 يحتوي على 5 كريات منها ثلاث حمراء و إثنان خضروان (لا نفرّق بينها عند اللمس) .

() نعتبر التجربة التّاليّة: نسحب عشوائيا و في آن واحد \mathbb{A} ثلاث كريات من الكيس \mathbb{A} ؛ و نعتبر الحادثة \mathbb{A} : الحصول على كريّة حمراء واحدة و كرتين خضراوين و الحادثة \mathbb{B} : الحصول على ثلاث كريات من نفس اللون .

. $P(B) = \frac{1}{7}$ و $P(A) = \frac{12}{35}$: ابيّن أنّ

(2) نعتبر التّجربة التّاليّة: نسخب عشوائيا و في آن واحد كرتين من الكيس (1) ؛ ثمّ نسحب كريّة من الكيس (1) ؛ لكن الحادثة (1) : الحصول على ثلاث كريات حمراء .

 $P(C) = \frac{6}{35}$: بيّن أنّ

6 يحتوي صندوق على 10 كريات ؛ 4 منها حمراء و الباقي خضراء (الكريّات لانفرّق بينها عند اللمس) ؛ نسحب عشوائيا و في آن واحد كرتين من الصندوق .

1) نعتبر الحادثة A: الكريتان المسحوبتان حمراوان .

. $P(A) = \frac{2}{15}$: بيّن أنّ

2) ليكن المتغيّر العشوائي X الذي يرفق بكلّ سحب عد د الكريّات الحمراء المتبقيّة في الصندوق بعد سحب الكرتين

أ) عيّن القيم الممكنة لـ X.

ب) بيّن أنّ : $\frac{8}{15} = (X = 3) = \frac{8}{15}$ ؛ ثمّ حدّ د قانون إحتمال المتغيّر العشوائي X .

ج) أحسب الأمل الرّياضي لـ X.

7 يحتوي صندوق على ثلاث كرات بيضاء تحمل الأرقام 0,1,2 و كرتان سو داوان تحملان الرّقمين 1,2 (لا يمكن التّمييز بين الكرات)؛ نسحب من الصندوق كرتان على التّوالى دون إرجاع.

الكرتان المسحوبتان A و B حيث A: الكرتان المسحوبتان A: الكرتان الرّقم A: B: سحب كرة بيضاء في المّرة الأولى تحملان الرّقم A: B: سحب كرة بيضاء في المّرة الأولى

. $P(A) = \frac{1}{10}$: أنّ بيّن أنّ \blacksquare

ب ب) أحسب إحتمال الحادثة B و بيّن أنّ:

 $. P(A \cap B) = \frac{1}{20}$

▶ ج) هل الحادثتان A و B مستقلّتان ? ؛ علل جوابك . 2 X المتغيّر العشوائي الذي يرفق بكلّ سحب جداء الرّقمين اللذين تحملهما الكرتين المسحوبتين .

أ) أنقل الجدول أدناه و أكمله ؛ معللا جوابك .

 \cdot X للمتغيّر العشوائي \cdot \cdot L(X) المتغيّر العشوائي

4	2	1	0	χ_{i}
••••			••••	$P(X = x_i)$

م و B حا دثتان من مجموعة إمكانيات تجربة عشوائيّة \overline{A} ؛ \overline{B} ؛ \overline{A}) الحا دثتان العكسيتان لـ A و B ؛ نعتبر شجرة الإحتمال المبيّنة أ دِناه .

1/ أ) ما ذا يمثّل كلّ من x و y .

ب) أكمل شجرة الإحتمال.

. y عبر عن P(B) بدلالة x و 2

X ماهي العلاقة بين X و Y حتى تكون X و B مستقلّتان.

 \mathbf{y} عبّر عن $P_{\mathrm{B}}(A)$ بدلالة \mathbf{x} و \mathbf{y}

x نفرض أنَّ y = 0.8 ؛ هل توجد قيمة لـ x حتى تكون $P_B(A) = P_A(B)$

$$A = \frac{x}{m} = \frac{B}{B}$$

$$0.6 = \overline{A} = \frac{y}{m} = \overline{B}$$

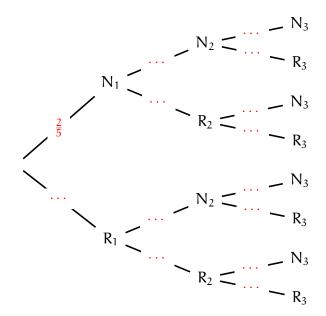
2 صندوق يحتوي على 7 كرات بيضاء و 3 سوداء و كلّ الكرات متماثلة و لا نفرّق بينها عند اللمس ؛ نسحب عشوائيا كرة من الكيس و نسجّل لونها ثمّ نعيدها إلى الكيس و نسجّل لونها .

1/ أحسب إحتمال الحوادث التّاليّة:

أ) الحصول على كرتين بيضاوين .

ب) الحصول على كرتين من نفس الون.

رُ نعرّف لُعبة حظّ كمّا يلي: تمنّح لكُلّ كرة بيضاء العلامة α و لكلّ كرة سو داء العلامة α المتغيّر العشوائي الذي يرفق بكل سحب مجموع النّقاط المحصل عليها .


أ) عيّن قيم X ؛ ثمّ عيّن قانون إحتمال X و عيّن الأمل الرياضي لـ X

ب) عيّن قيمة α حتى تكون اللعبة مربحة .

n-3 نضيف للكيس n-3 كريّة و نعيد عمليّة السحب أعلاه ؛ ما هو عدد الكرات السّوداء التي تمّ إضافتها إلى الصندوق ؛ علما أن إحتمال n-3 هو n-3 ؛ علما أن إحتمال n-3

 U_1 ثلاث صناديق U_1 و U_2 و U_3 الصندوق U_4 يحتوي يحتوي 2 كرات سو داء و 3 حمراء ؛ الصندوق U_4 يحتوي على كرة سو داء و 4 حمراء ؛ و الصندوق U_4 يحتوي على 3 كرات سو داء و 4 حمراء ؛ نقوم التجربة التّاليّة : نسحب عشوائيا كرة من U_4 و كرة من U_4 و نضعهما في الصندوق U_4 ؛ ثمّ نسحب كرة من الصندوق U_4 ؛ نرمز بيم U_4 المحا دثة سحب كرة سو داء من الصندوق U_4 المحا دثة سحب كرة سو داء من الصندوق U_4 المحا دثة سحب كرة سو داء من الصندوق U_4 نفس الشيء U_4 المحا دثة سحب كرة سو داء من الصندوق U_4 عند اللما عند اللمس).

1/ أعد رسم شجرة الإحتمالات التّاليّة و أكملها .

2/ أ) أحسب إحتمال الحوادث التّاليّة: الله الله الله الله التاليّة : No O No O No O No O No O No O No

. $N_1 \cap N_2 \cap N_3$ $Q \cap N_1 \cap R_2 \cap N_3$

ب) استنتج إحتمال $N_1 \cap N_3$. $R_1 \cap N_3$ أحسب بطريقة مماثلة إحتمال $R_1 \cap N_3$.

 N_3 استنتج من السؤال السّابق إحتمال الحادثة N_3

 N_1 و N_1 مستقلّتان. N_3 مستقلّتان

5/ نفرض أنَّ الكرة المسحوبة من الصندوق U3 سوداء ؟ ما هو إحتمال أن تكون الكرة المسحوبة من U_1 حمراء .

الماء و 6 ينتاجيّة يسيّرها 10 عمال ، منهم 4 نساء و 6 رجال ، أرا دوا اختيار لجنة تسيير مؤلّفة من 3 أعضاء من بين العمّال العشرة ، ما هو الإحتمال لكي تشمل:

2/ على الأكثر امرأتين. 1/ 3 نساء

1/ 3 نساء
 2/ على الأكثر امراتين.
 4/ على الأقل إمرأتين

🔼 في ورشة %2 من القطع المصنوعة فاسدة ، قرر صاحب الورشة أن يجري عملية مراقبة كما يلى:

⊳ إذا كانت القطعة المصنوعة في حالة جيّدة فإنّ إحتمال قبولها هو 0.96.

⊳ إذا كانت القطعة المصنوعة فاسدة فإنّ إحتمال رفضها هو 0.98.

نختار قطعة و بقبل أنّ الإختيارات متساويّة الإحتمال ، نرمز بـ C إلى الحادثة : القطعة المصنوعة في حالة جيّدة و مرفوضة ، ماهو إحتمال الحادثة C .

عند اللمس ؛ الصندوق U_1 يحتوى n كريّة بيضاء و 3 U_2 عدد طبيعي أكبر تماما من 1 ، الصندوق یحتوی کرتین بیضاوین و کریّة سودا، ، نسحب عشوائیا كريّة من الصندوق U_1 و نضعها في الصندوق U_2 ؛ ثمّ نسحب كريّة من الصندوق U₂ .

نعتبر الحادثة : B_i سحب كريّة بيضاء من الصندوق : U. A نعتبر الحادثة A سحب كريّة من نفس اللون بالنّسبة . U_2 و U_1 للصندوقين

. $P(A) = \frac{3}{4} \left(\frac{n+2}{n+3} \right)$ هو A الله بيّن أنّ إحتمال A

 $\lim_{n\to+\infty} P(A)$ عيّن

2/ نعتبر الحادثة B: بعد التّجربة ، الصندوق U1 يحتوى على كريّة بيضاء واحدة

 $P(B) = \frac{6}{4(n+3)}$. این أنّ A

4 اختارت مجلَّة عشرة كتب مختلفة مثنى مثنى و مكوَّنة من 4 كتب في الرّواية و 4 كتب في العلوم و 2 في التّاريخ ، قرّرت إعدا د لائحة تتضمّن ترتيبا لعناوين ثلاث كتب من بين العشرة عن طريق القرعة لسحب ثلاث عناوين واحد تلو الآخر دون إرجاع.

1/ بيّن أنّ عدد اللوائح هو 720.

2/ أحسب إحتمال الحادثين التّاليتين:

A: الحصول على لائحة يكون أوّلها عنوان كتاب تاريخ. B: الحصول على لائحة لا تتضمّن أي عنوان كتب تاريخ

المتغيّر العشوائي الدي يربط كل لائحة بعد x = 3كتب التّاريخ.

أ) عين القيم الممكنة لـ X .

ب) عيّن قانون إحتمال X و أحسب أمله الرّياضي .

عادة ما ينسى الأستاذ مفاتيح القسم. من أجل كل عد د طبیعی $n \geq 1$ ، نسمی E_n الحا دثة : (الأستا ذينسی مفاتيحه في القسم في اليوم (n)؛ ليكن P_n احتمال P_n نسمى الاحتمال $P_1=a$ بأنه ينسى مفاتيحه في اليوم الأول

نفرض أن الشروط التالية محققة:

◄ إذا نسى مفاتيحه في اليوم n ، فإن احتمال أن ينساهم $\frac{1}{n}$: هوn+1 في اليوم الموالي n+1

ان احتمال أن الم ينس مفاتيحه في اليوم n ، فإنّ احتمال أن ينساهم في اليوم الموالي n+1 هو: $\frac{4}{10}$.

1/ شكّل شجرة الإحتمال التي تنمذج هذه الوضعية.

 $P_{E_n}(E_{n+1})$: احسب الإحتمالين الشرطيين /2

: ثم بدلالة P_n احسب الإحتمالين $P_{\overline{E_n}}(E_{n+1})$ $P(E_{n+1} \cap E_n)$

. P $(E_{n+1} \cap \overline{E_n})$ و

3/ استنتج أنه من أجل كل عدد طبيعي غير معدوم: $P_{n+1} = -\frac{3}{10}P_n + \frac{4}{10}$

. $U_n = 13P_n - 4$: $n \in \mathbb{N}^*$ کل أنه من أبنه من

أً) بيّن أن (Un) متتالية هندسية ، وعيّن الحد الأول لها

ب اكتب H_n بدلالة n و a ، ثم استنتج عبارة U_n بدلالة

ج) أحسب P_n ؛ كيف تفسّر هذه النّتيجة ؟.

مندوق U₁ يحتوي على 7 كريّات منها 4 حمراء و 3 خضراء و صندوق آخر لا يحتوى 5 كريّات منها 3 حمراء و 2 خضراء (الكريّات لا نفرق بينها عند اللمس). 1/ نعتبر التّجربة العشوائيّة التّاليّة: نسحب عشوائيا 3 كريّات من الصندوق U_1 و نعتبر الحا دثتين A و B حيث ؛ A: الحصول على كريّة حمراء واحدة و إثنان خضراوان ؛ B: الحصول على ثلاث كريّات من نفس اللون.

. $P(B) = \frac{1}{7}$ و $P(A) = \frac{12}{35}$: مِيْنِ أَنِّ

2/ نعتبر التَّجربة التَّاليَّة : نُسحب عشوائيا كريتين من الصندوق U_1 ؛ ثمّ نسحب عشوائيا كريّة من الصندوق U_2 و لتكن الحادثة C: الحصول على ثلاث كريّات حمراء.

. $P(C) = \frac{6}{35}$: أَنَّ أَنَّ بَيِّن أَنَّ أَنَّ أَنَّ أَنَّ بَيْنِ أَنَّ أَنَّ أَنْ