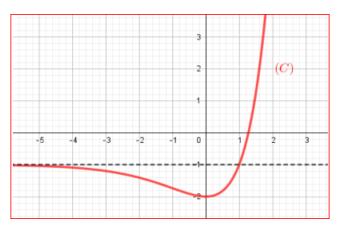
التمريـــن (3)

 $g(x)=e^x-x-1$: بالدالة g المعرفة على $\mathbb R$ بالدالة g

- $-\infty$ أحسب نهايات الدالة g عند ∞ و ∞
- أدرس اتجاه تغير الدالة g , ثم شكل جدول تغيراتها
- $\cdot x$ من ماستنتج إشارة g(x) حسب قيم $\cdot x$ أحسب $\cdot y(0)$
 - $f(x) = rac{x}{e^x x}$: بعتبر الدالة f المعرفة على $\mathbb R$ ب
- (C) هو المنحنى الممثل للدالة f في المستوى المنسوب إلى المعلم المتعامد والمتجانس $(0; \vec{i}, \vec{j})$.
 - أحسب نهايات الدالة f , أم فسر النتائج هندسيا $oldsymbol{0}$
- المجاول f'(x) أحسب f'(x) أحرس اتجاه تغير الدالة f وشكل جدول تغيراتها
- $oldsymbol{\mathfrak{G}}$ أ)- عين معادلة المماس (T) للمنحنى (C) عند النقطة ذات الفاصلة $oldsymbol{\mathfrak{G}}$.
 - (T) بالنسبة للماس (C) بالنسبة للماس (T).
 - . (C) المستقيمات المقاربة والمنحنى $oldsymbol{\Phi}$
 - ناقش بیانیا وحسب قیم الوسیط الحقیقی m حلول المعادلة : f(x) = mx

التمريـــن (4)

و المعرفة على (C) في الشكل الموالي (C) هو المنحنى الممثل للدالة $g(x)=(ax+b)e^x+c$ بـ : $\mathbb R$



- 🛭 بقراءة بيانية :
- c عين نهاية الدالة g عند ∞ ثم استنتج قيمة
 - $+\infty$ عين نهاية الدالة g عند
- ج)- عين قيمة كلا من g(0) و g'(0) ; ثم استنتج قيمتي كلا من a
 - $g(x) = (x-1)e^x 1$: يلي فرض فيما يلي **2**
 - أ)- شكل جدول تغيرات الدالة g

التمريـــن (1)

 $g(x)=2x+1+e^{2x}$: بعتبر الدالة g المعرفة على $\mathbb R$ بـ با

- ${f R}$ أدرس اتجاه تغير الدالة ${f g}$ على ${f R}$
- بین أن المعادلة g(x) = 0 تقبل حلا وحیدا α علی المجال [-0.7; -0.6]
 - x استنتج إشارة g(x) حسب قيم 3

 $f(x)=1-x+(x+1)e^{-2x}$: بالة معرفة على f الله معرفة على f

- $(O; \overrightarrow{i}, \overrightarrow{j})$ تمثيلها البياني في معلم متعامد ومتجانس (C_f)
 - $oldsymbol{\cdot}+\infty$ عند ∞ و ∞ و $oldsymbol{\cdot}$
- بـ)- استنتج أن المنحنى (C_f) يقبل مستقيم مقارب مائل (D) بجوار $+\infty$
 - (D) بالنسبة إلى (C_f) بالنسبة إلى
- $f'(x) = -g(x).e^{-2x} : x$ بین أنه من أجل كل عدد حقیقی 2
 - f شكل جدول تغيرات الدالة $oldsymbol{\Phi}$
 - $f(lpha) = rac{-2lpha^2}{2lpha + 1}$ بین أن
 - $(\alpha=-0.65$ ا \overrightarrow{i} $\parallel=2cm$ انشئ (C_f) انشئ (C_f)
- ناقش بيانيا حسب قيم الوسيط الحقيقي m عدد وإشارة حلول $oldsymbol{0}$
 - $(1-m-x)e^{2x}+x+1=0$: المعادلة

التمريـــن (2)

 $f(x)=x+1-rac{2e^x}{e^x+1}$: بالمعرفة على $\mathbb R$ بالمعرفة على بالمعرفة على بالمعرفة على بالمعرفة على بالمعرفة على المعرفة والمتعامد والمتجانس (C)

كما تمتيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجالس \overrightarrow{i} , \overrightarrow{j}).

- $oldsymbol{0}$ أحسب نهاية الدالة f عند ∞ , ثم بين أن المستقيم (d_1) مقارب مائل لـ y=x+1 معادلته y=x+1
 - : تحقق أنه من أجل كل عدد حقيقي x تكون $oldsymbol{arphi}$

$$f(x) = x - 1 + \frac{2}{e^x + 1}$$

بـ)- استنتج نهاية الدالة f عند ∞ + , وأن المستقيم (d_2) مقارب مائل لـ y=x-1 عادلته : y=x-1

- ❸ حدد وضعية المنحنى (C) بالنسبة إلى المستقيمين المقاربين
 - أدرس اتجاه تغير الدالة f ثم شكل جدول تغيراتها $oldsymbol{\Phi}$
 - € أنشئ المنحني (C) والمستقيمات المقاربة
- $oldsymbol{\Theta}$ ناقش بيانيا حسب قيم الوسيط الحقيقي $oldsymbol{m}$ عدد حلول المعادلة :

$$(1-m)(e^x+1)-2e^x=0$$

الموسم الدراسي : 2019 – 2020

1.2 بين أن المعادلة g(x)=0 تقبل حلا وحيدا lpha محصور بين g(x)=0 و 1.3

 \cdot به استنتج إشارة g(x) حسب قيم -

 $f(x)=rac{x}{e^x+1}$: بعتبر الدالة f المعرفة على $\mathbb R$ با بياني في م.م.م (C_f) منحناها البياني في م.م.م (C_f)

 $oldsymbol{0}$ أحسب نهايات الدالة f عند ∞ + و ∞ - , ثم حدد معادلة المستقيم المقارب المائل لـ (C_f) بجوار ∞ - .

بين أن المستقيم (d) ذو المعادلة y=x مقارب لـ (C_f) بجوار ∞ , ثم أدرس وضعية (C_f) بالنسبة إلى (d) .

ullet أدرس اتجاه تغير الدالة f , ثم شكل جدول تغيراتها ullet

 $oldsymbol{\cdot} f(lpha)$ بین أن $oldsymbol{\cdot} f(lpha) = oldsymbol{lpha} - oldsymbol{1}$ بین أن

 $oldsymbol{\cdot}$ (C_f) انشئ المستقيمات المقاربة والمنحنى $oldsymbol{\odot}$

ناقش بیانیا حسب قیم الوسیط الحقیقی m عدد حلول المعادلة : f(x)=f(m)

التمريـــن (5)

 $f(x)=x+rac{4}{1+e^x}$: بعتبر الدالة f المعرفة على \mathbb{R} به بالمعرفة على f بالمعرفة على المعرفة على منحناها البياني في م.م.م (C_f) منحناها البياني في م.م.م

 $oldsymbol{0}$ عين نهايتي الدالة عند $\infty+$ و $\infty-$.

 $f'(x)=\left(rac{1-e^x}{1+e^x}
ight)^2:x$ يين أنه من أجل كل عدد حقيقي x عدد حقيقي . x أي استنتج اتجاه تغير الدالة x ثم شكل جدول تغيراتها .

 $oldsymbol{lpha}$ أثبت أَن المعادلة f(x)=0 تقبل حلا وحيدا -3.93 < lpha < -3.92

 (C_f) مقارب لـ y=x مقارب لـ (d) أي- بين أن المستقيم (d) ذو المعادلة y=x مقارب لـ $+\infty$

بـ)- بين أن المستقيم (d') ذو المعادلة y=x+4 مقارب لـ (C_f) بجوار $-\infty$

ج)- أدرس الوضع النسبي بين (C_f) والمستقيمين المقاربين .

 $oldsymbol{\cdot}$ (C_f) أرسم المستقيمات المقاربة والمنحنى $oldsymbol{\odot}$

ناقشٰ بیانیا وخسب قیم الوسیط الحقیقی m حلول المعادلة : f(x) = x + m

التمريـــن (6)

 $h(x)=1-(x+1)e^{-x}$: بالمعرفة على R المعرفة على (I

 $\lim_{x \to -\infty} h(x) = \int_{-\infty}^{\infty} (1 - \int_{-\infty}^{\infty} \mathbf{0})^{-1} dx$

 $\lim_{x \to +\infty} x e^{-x} = 0$ بين أن $\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$ بين أن $\lim_{x \to +\infty} x e^{-x} = +\infty$

- ج)- أحسب h(x) غسر النتيجة هندسيا
- 🛭 أدرس اتجاه تغير الدالة h ثم شكل جدول تغيراتها
- $f(x)=x-2+(x+2)e^{-x}$: بعتبر الدالة f المعرفة على $\mathbb R$ بد : $\mathbf R$ بنحناها البياني في م.م.م (C_f) منحناها البياني في م.م.م
 - f'(x) = h(x) : x عدد حقیقی عدد اجل کل عدد و أ)- بین أنه من اجل کل عدد حقیقی ب)- استنتج اتجاه تغیر الدالة f ثم شکل جدول تغیراتها .
- بين أَن المنحنى (C_f) يقبل نقطة إنعطاف يطلب تعيين إحداثيبها -
- و أ)- بين أن المنحنى (C_f) يقبل مماسا (T) معامل توجيهه 1 ثم أكتب معادلة له .
- (C_f) بين أن المستقيم ($oldsymbol{D}$) ذو المعادلة $oldsymbol{y}=x-2$ مقارب لـ $\infty+$
 - \cdot (D) بالنسبة إلى المنحنى (C_f) بالنسبة إلى المنحنى (C_f).
 - (T) والمماس (D) والمستقيم (D) والمماس (C_f)
 - ناقشٰ بيانيا حسب قيم الوسيط الحقيقي m حلول المعادلة :

 $(x+2)e^{-x}-2-m=0$

التمريـــن (7)

 $g(x)=2+(x-1)e^{-x}$: بالدالة المعرفة على g بالدالة المعرفة على g

 $\lim_{x\to-\infty} g(x)$ أحسب $\lim_{x\to+\infty} g(x)$ و أحسب

أدرس اتجاه تغير الدالة g ثم شكل جدول تغيراتها

lpha بين أن المعادلة g(x)=0 تقبل حلا وحيدا lpha

 \mathbb{R} على g(x) على g(x) على على -0,38 < lpha < -0,37

 $f(x)=2x+1-xe^{-x}$: يلي \mathbb{R} كما يلي المعرفة على f المعرفة على المستوي المنسوب إلى معلم متعامد وليكن (C_f) تمثيلها البياني في المستوي المنسوب إلى معلم متعامد ومتجانس $(O; \overrightarrow{i}; \overrightarrow{j})$

 $\lim_{x \to -\infty} f(x)$ و $\lim_{x \to +\infty} f(x)$ أ- أحسب أحسب $\int_{x \to +\infty} f(x)$

-ب- أحسب $\lim_{x \to +\infty} [f(x) - (2x+1)]$ أحسب أحسب

: -ج- أدرس الوضع النسبي لـ (C_f) و (Δ) حيث y=2x+1

f'(x) = g(x) يكون x يكون f'(x) = g(x) ثم استنتج اتجاه تغير الدالة f وشكل جدول تغيراتها.

عند النقطة ذات الفاصلة (C_f) عند النقطة ذات الفاصلة 3

(f(lpha)=0.8 أرسم (Δ) و (T) والمنحنى (C_f) (نأخذ m عدد و إشارة حلول m ناقش بيانيا وحسب قيم الوسيط الحقيقي m عدد و إشارة حلول المعادلة ذات المجهول m : m

التمريـــن (8)

: باg الدالة المعرفة على ∞ +;0[با

$$g(x) = (1 + x + x^2)e^{-\frac{1}{x}} - 1$$

 $0;+\infty$ [بين أنه من أجل كل x من 0

$$g'(x) = \frac{(x+1)(2x^2+1)}{x^2}e^{-\frac{1}{x}}$$

واستنتج اتجاه تغير الدالة g على المجال $]\infty+\infty[$

 α بين أن المعادلة g(x)=0 تقبل حلا وحيدا α حيث : g(x)=0 بين أن المعادلة α استنتج إشارة α على المجال α

 $f(x)=rac{1}{x}+(1+x)e^{-rac{1}{x}}$: بالدالة المعرفة على ا $0:+\infty$ بالدالة المعرفة على اf .II الدالة المعلم المتعامد ليكن (C_f) تمثيلها البياني إلى المستوي المنسوب إلى المعلم المتعامد والمتجانس ($\overrightarrow{i};\overrightarrow{j}$)

 $\lim_{x \to +\infty} f(x)$ و $\lim_{x \to +\infty} f(x)$ أحسب $\int_{x \to 0}^{+\infty} f(x)$

 $f'(x)=rac{g(x)}{x^2}:$]0; $+\infty$ نه من أجل كل x من أجل من أجل من أجله تغير الدالة f ثم شكل جدول تغيراتها.

 $(t=-rac{1}{t}$ بين أن $(t=-rac{1}{t}-x)=\lim_{x o +\infty}(xe^{-rac{1}{x}}-x)=-1$ بين أن المستقيم (Δ) ذو المعادلة y=x مقارب للمنحنى (C_f) بجوار Δ

: ب. $]0,+\infty[$ ب. الدالة العددية المعرفة على h الدالة $h(x)=rac{1}{x}-1+e^{-rac{1}{x}}$

اً- أحسب h(x) وادرس اتجاه تغير الدالة h واستنتج المارة h(x) على h(x) على h(x) على h(x)

-ب- تحقق أن f(x)-x=(1+x)h(x) ثم استنتج الوضعي النسبية لـ (C_f) بالنسبة إلى المستقيم (Δ) والمنحنى (f(lpha)pprox 1.73)

التمريـــن (9)

 $f(x)=rac{x}{x-1}e^{-x}$: كما يلي : $-\infty$, 1 الدالة العددية المعرفة على $-\infty$, 1 المعلم المتعامد وليكن (C_f) تمثيلها البياني إلى المستوي المنسوب إلى المعلم المتعامد والمتجانس (\overrightarrow{i} ; \overrightarrow{j})

أحسب $\lim_{x \to 1} f(x)$ ، ثم فسر النتيجة بيانيا وأحسب $\lim_{x \to 1} f(x)$

 $f'(x) = rac{(-x^2 + x - 1)e^{-x}}{(x - 1)^2}$

و أدرس إتجاه تغير الدالة f ثم شكل جدول تغيراتها

 $oldsymbol{\mathfrak{G}}$ -أ- أكتب معادلة المماس (T) للمنحنى (C_f) عند النقطة ذات الفاصلة صفر.

 $h(x)=e^{-x}+x-1$ بالدالة المعرفة على الججال $-\infty$; 1 بالدالة المعرفة على المجال أدرس اتجاه تغير الدالة h ثم استنتج أنه

 $h(x) \geq 0$:] $-\infty$; 1[من أجل كل x من أجل

 $f(x)+x=rac{xh(x)}{x-1}:]-\infty;1[$ بين أنه من أجل كل x من T من أنه من أجل كل بين أنه من أبد من أبد النتيجة T فسر النتيجة الوضع النسبي للمنحنى T والمماس T فسر النتيجة بيانيا.

 $m{\Theta}$ أكتب معادلة المستقيم (Δ) الذي يشمل مبدأ المعلم O والنقطة $A\left(-2;rac{2}{3}e^2
ight)$ على المستقيمين $A\left(-2;rac{2}{3}e^2
ight)$ على المجال $A\left(-2;rac{2}{3}e^2
ight)$

m وسيط حقيقي، ناقش بيانيا وحسب قيم الوسي الحقيقي m عدد حلول المعادلة $x \in [-2;1[$ حيث f(x) = mx

التمريـــن (10)

. $g(x)=1-2xe^{-x}$ لتكن الدالة g المعرفة على $\mathbb R$ كما يلي: g(x) المحرفة على g(x) الدالة g ثم استنتج اشارة .

نعتبر الدالة f المعرفة على $\mathbb R$ كما يلي:

$$f(x) = (x+1)(1+2e^{-x})$$

التمثيل البياني للدالة f في المستوي المنسوب إلى المعلم المتعامد المتجانس (C_f) حيث (C_f) حيث المتجانس (C_f)

 $\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) \int_{-\infty}^{\infty} \mathbf{0}$

ادرس اتجاه تغير الدالة f ثم شكل جدول تغيراتها .

 $egin{aligned} egin{aligned} \Delta \end{pmatrix}$ بين أن: 1=1=[f(x)-1]=1 ثم استنتج معادلة لـ $\Delta \end{pmatrix}$ ، المستقيم المقارب المائل للمنحنى $\Delta \begin{pmatrix} C_f \end{pmatrix}$.

. (Δ) وضعية المنحنى (C_f) بالنسبة الى المستقيم بـ)- ادرس

 $oldsymbol{\mathfrak{G}}$ اثبت أن المنحنى (C_f) يقبل مماسا وحيدا (T) يوازي (Δ) يطلب تعيين معادلة له .

 (C_f) و المنحنى (T) و (C_f) و المنحنى (C_f)

m عين قيم الوسيط الحقيقي m حتى المنحنى f(x) = x + m علين مختلفين .

التمريـــن (11)

 $.f(x)=x-rac{4e^x}{e^x+1}$: بعتبر الدالة f المعرفة $\mathbb R$ بـ : -(I وليكن (C_f) تمثيلها البياني في معلم متعامد ومتجانس $\|ec{i}\|=1$ مع $\|ec{i}\|=1$

 $+\infty$ أحسب نهايات الدالة fعند $-\infty$ و $+\infty$

احسب f'(x) , وبين أن f متزايدة تماما $\mathbb R$, ثم شكل جدول تغيراتها

: بین أنه من أجل كل عدد حقیقي xفإن $f(x) = x - 4 + rac{4}{1 + e^x}$

ب)- استنتج أن المستقيم (Δ) ذو المعادلة :y=x-4 مقارب مائل المنحنى (C_f) بجوار ∞ + , ثم أدرس وضعية (C_f) بالنسة إلى (Δ). ج)- بين أن المستقيم (Δ) ذو المعادلة : Δ 0 مقارب مائل لا بجوار Δ 0, ثم أدرس وضعيته مع (Δ 0)

 (T_f) أكتب معادلة المماس(T) للمنحنى النقطة ذات الفاصلة (T_f)

. بين أن f(x)+f(-x)=-4 , ماذا تستنتج f(x)

ج)- بين أن النقطة $\omega(0;-2)$ نقطة انعطاف للمنحنى ($C_{
m f}$).

: حيث lpha حيث f(x)=0 عيد المعادلة f(x)=0 عيث عبين أن المعادلة a

أرسم المستقيمين المقاربين (Δ)و (D) والمنحنى (C_f).

: خلول المعادلة مي ناقش بيانيا حسب قيم الوسيط الحقيقي مي خلول المعادلة $m.(e^x+1)+4e^x=0$

نعرف على $\mathbb R$ الدالة g كما يلي : f(|x|)=f(|x|), و $g(C_{\mathrm{g}})$ تمثيلها البياني في المعلم السابق .

1 بين أن الدالة g زوجية .

• اشرح كيف يمكن رسم (C_g) انطلاقا من (C_f) ثم ارسمه ${f Q}$

التمريـــن (12)

 $f(x)=2x+1-xe^{x-1}$ بعتبر الدالة العددية f المعرفة على $\mathbb R$ بعد المثل المثل لها في مستوي منسوب إلى معلم متعامد متجانس (C_f) (الوحدة (2cm)).

 $+\infty$ عند $-\infty$ عند f عند $+\infty$ وعند (1

2) بين أن المستقيم (Δ) الذي معادلته y=2x+1 هو مستقيم مقارب مائل للمنحنى (C_f) عند ∞ , $-\infty$ عند الوضع النسبي

. (Δ) بانسبة إلى المستقيم (C_f) للمنحنى

 $\cdot f$ للدالة f'' والمشتقة الثانية f'' للدالة f''

 $-\infty$ عند f' عند الدالة f' محددا نهاية الدالة f' عند $+\infty$ وعند $+\infty$.

ج) أحسب f'(1) ثم استنتج من أجل كل عدد حقيقي x إشارة f'(x)

د) شكل جدول تغيرات الدالة f

(4) بين أن المعادلة (a)=0 تقبل حلين (a)=0 و (a)=0 بين أن المعادلة (a)=0 بين أن المعادلة (a)=0

. 5) أً) أنشئ (Δ) و (C_f) في المعلم.

ب) ناقش بیانیا, حسب قیم الوسیط الحقیقی m عدد وإشارة حلول المعادلة f(x)=m

التمريـــن (13)

 $g(x)=e^{-x}+x-1$ بـ: $\mathbb R$ معرفة على g

 \mathbb{R} على g أحسب g'(x) ثم عين اتحاه تغير الدالة g على g

 $g(x) \geq 0: \mathbb{R}$ بین أنّه من أجل كل x من $g(x) \geq 0$ ، استنتج أنّ: $e^{-x} + x \geq 1$

 (\mathcal{C}_f) نعتبر الدالة f المعرفة بـ: $\frac{x}{e^{-x}+x}$ وليكن f تثيلها البياني في معلم متعامد و متجانس $(O; \vec{i}, \vec{j})$

 $\mathbb R$ بيّن أنّ مجموعة تعرّيف الدالة f هي $\mathbf 0$

 $f(x) = rac{1}{1+rac{1}{xe^x}}$. \mathbb{R} من x کل x من أجل أ

ب)- أحسب $\lim_{x \to +\infty} f(x)$ و $\lim_{x \to +\infty} f(x)$ فسر النتيجتين بيانيا.

 $f'(x) = rac{{
m e}^{-x}(1+x)}{({
m e}^{-x}+x)^2}: \mathbb{R}$ من x من أبين أنه من أجل كل x من x

.f بـ)- أدرس اشارة (f'(x)، ثم شكل جدول تغيرات الدالة

 $oldsymbol{O}$ عند النقطة الماس المنحنى (\mathscr{C}_f) عند النقطة $oldsymbol{\mathfrak{S}}$

 $(x-f(x))=rac{xg(x)}{g(x)+1}$: \mathbb{R} من x من أجل كل x من أجل كا x-f(x)

ج)- استنتج الوضع النسبي للمنحنى (\mathscr{C}_f) و المستقيم (Δ) ذو المعادلة y=x

 $(0; \overrightarrow{i}, \overrightarrow{j})$ في المعلم (Δ) و (G_f) في المعلم (Δ

6 ناقش حسب قيم الوسيط الحقيقي m عدد و اشارة حلول المعادلة:

 $\frac{xe^x}{xe^x+1}-1=m$

التمريـــن (14)

 $g(x) = x + e^x$ ب يعتبر الدالة g المعرفة على $\mathbb R$

- أدرس تغيرات الدالة g
- بين أن المعادلة g(x)=0 تقبل حلا وحيدا lpha في lpha ثم تحقق $oldsymbol{arphi}$ $-0.6 < \alpha < -0.5$ من أنَّ:
 - x استنتج اشارة g(x) حسب قیم \odot

نعتبر الدالة العددية f المعرفة على $\mathbb R$ بـ:

$$f(x) = (x+1)(1-e^{-x})$$

و ليكن (۴_f) تمثيلها البياني في المستوى المنسوب الى المعلم المتعامد $(o; \overrightarrow{i}, \overrightarrow{j})$ و المتجانس

- $+\infty$ عند ∞ و عند ∞ و الدالة f عند ∞
- $f'(x) = g(x).e^{-x} : x$ بین أنّه من أجل كل عدد حقیقی \mathcal{Q}
 - استنتج اتجاه تغیر الدالهٔ f و شکّل جدول تغیراتها، $oldsymbol{\mathfrak{G}}$
- مقارب للمنحنى y=x+1 مقارب المنحنى (Δ) أي- بين أنّ المستقيم (Δ)
- (Δ) بالنسبة إلى المستقيم ((Δ)) بالنسبة إلى المستقيم ((Δ)). ج)- أكتب معادلة ديكارتية لـ (\mathcal{T}) مماس المنحنى (\mathscr{C}_f) عند النقطة
 - f(lpha)ذات الفاصلة $f(lpha)=rac{(lpha+1)^2}{lpha}$ ثم استنتج حصرا لـ f(lpha)
 - $oldsymbol{\cdot}$ أرسم كلا من $oldsymbol{(\Delta)}$ ، (\mathcal{F}) و $oldsymbol{(\mathcal{C}_f)}$
- انقشٰ بیانیا حسب قیم الوسیط الحقیقی m عدد و إشارة حلول $f(x) = \ddot{x} + m : x$ المعادلة ذات المجهول الحقيقى

التمريـــن (15)

: بما يلي $-\infty$ المعرفة على $-\infty$ بما يلي العددية f

$$f(x) = \frac{2}{(x-1)^2} e^{\frac{x+1}{x-1}}$$

وليكن (Γ) المنحنى الممثل للدالة f في المستوى المنسوب إلى معلم

. $\|i\| = 2cm$: حيث (O, i, \overline{j}) متعامد ممنظم

: نضع من أن يخقق من أن
$$t = \frac{2}{x-1}$$
 نضع (أ (1 I

.
$$\lim_{\substack{x \to 1 \\ x < 1}} f(x)$$
 ثم استنج $\frac{2}{(x-1)^2} e^{\frac{x+1}{x-1}} = \frac{e}{2} t^2 e^t$

- . $\lim_{x \to \infty} f(x)$ ب
- : بما يلي الدالة العددية المعرفة على] $-\infty$, الدالة العددية المعرفة على) (1

$$x \in]-\infty,1[$$
 لكل $u'(x)$ لكل . $u(x) = e^{\frac{x+1}{x-1}}$

- . $x \in]-\infty, 1[$ لکل $f'(x) = \frac{-4x}{(x-1)^4} e^{\frac{x+1}{x-1}}$: ب بین أن
 - أدرس تغيرات الدالة f
 - أنشئ المنحنى (٢).
- بين أن المعادلة $f(x) = \frac{1}{2}$ تقبل حلين 1- و β الحل (1]

 - الأخر . $(10^{-2} \ \text{math} \ \beta) المعته (10^{-2} \ \text{math} \ \beta) المعته (10^{-2} \ \text{math} \ \beta) المعته (10^{-2} \ \text{math} \ \beta) المعتبد (10^{-2} \ \text{math} \$
- ليكن $a \in [-\infty, 1]$ يدد جلول عدد حلول (2) ليكن $a \in [-\infty, 1]$ f(x) = f(a) : المعادلة

