الاثنين

رختبار الفصل الثاني لمادة الرياضيات

ثا نوية الشهداء الإخوة فروج - بومدفع -2020/03/06

المدة: 3 سا

أقسام: 3 عتج 1-2

التمرين الأول: (04 نقاط)

$$u_{n+1} = \frac{9 + u_n^2}{2u_n}$$
: n عدد طبيعي عدد الأول $u_0 = 6$ الأول الأول $u_0 = 6$ المتتالية العددية المعرفة بحدها الأول

- $u_n > 3$ ، n بر هن بالتراجع انه من اجل كل عدد طبيعي n ، n و استنتج أنها متقاربة. (2) بين أن المتتالية (u_n) متناقصة تماما على α
- $u_{n+1} 3 \le \frac{1}{2}(u_n 3)$ ، $u_{n+1} = 0$ عدد طبیعي $u_n = 0$ أـ بر هن أنه من اجل كل عدد طبیعي (3

$$u_n - 3 \le 3 \left(\frac{1}{2}\right)^n$$
 ، n عدد طبیعي عدد أنه من اجل كل عدد عدد استنتج أنه من اجل

 $\lim_{n\to+\infty}u_n \xrightarrow{}$

. $v_n = u_0 + u_1 + \dots + u_{n-1}$: من أجل كل عدد طبيعي n غير معدوم ، نضع (4

$$3n < v_n \le 6\left(1 - \frac{1}{2^n}\right) + 3n$$
 ، n عدد طبیعي أ- بین أنه من اجل كل عدد طبیعي

 $\lim_{n\to+\infty}\frac{V_n}{n}$ بـ استنتج

التمرين الثانى: (04 نقاط)

تتكون باقة ورد من أربع وردات حمراء وثلاث وردات بيضاء ووردتين لونهما أصفر.

1) نختار عشوائيا وفي ان واحد ثلاث وردات من هذه الباقة .

نعتبر المتغير العشوائي X الذي يرفق بكل نتيجة اختيار عدد الوردات الصفراء المختارة .

أ- عرف قانون الاحتمال للمتغير العشوائي X .

E(X)بـ احسب الامل الرياضياتي

2) نختار على التوالى وبدون ارجاع ثلاث وردات من هذه الباقة.

نعتبر الحوادث التالية: A: " اختيار ثلاث وردات من نفس اللون " .

B : " اختيار وردتين على الأقل لونهما أحمر B

" اختیار ثلاث وردات حمراء C

p(C) و p(B) , p(A) . أ- احسب الاحتمالات التالية

بـ علما أن الوردات المختارة من نفس اللون ، ما هو احتمال أن تكون حمراء.

التمرين الثالث: (05 نقاط)

. $(z-2)(z^2+2z+4)=0$ التالية: z التالية: z المعادلة ذات المجهول المركب التالية: z

2) المستوي المركب منسوب إلى المعلم المتعامد المتجانس (O,u,\vec{v}) ه (D,u,\vec{v}) المستوي لواحقها على الترتيب:

.
$$z_C=2$$
 g $z_B=-1-i\sqrt{3}$, $z_A=-1+i\sqrt{3}$

أ- علم النقط B, A و C.

. ABC مثلث طبيعة المثلث ، $\frac{Z_B-Z_C}{Z_A-Z_C}=e^{i\frac{\pi}{3}}$: بين أن:

. ABC عين مركز و نصف قطر الدائرة (C) المحيطة بالمثلث

 $2(z+\overline{z})+z\overline{z}=0$ مجموعة النقط M من المستوي ذات اللاحقة z حيث: (Γ)

أ- عين طبيعة المجموعة (Γ) والعناصر الهندسية المميزة لها.

. (Γ) بـ تحقق أن النقطتين A و B تتتميان إلى

ليكن
$$R$$
 الدوران الذي مركزه A وزاويته $\frac{\pi}{3}$.

أ- أكتب العبارة المركبة للدوران R ثم عين صورة النقطة B بالدوران R .

. ABCDب- عين z_n لأحقة النقطة D صورة النقطة C بالدوران R ثم استنتج طبيعة الرباعي

R عين صورة المجموعة (Γ) بالدوران

التمرين الرابع: (07 نقاط)

الدالة العددية المعرفة على * $_{|}$ ب: $f(x)=1-\frac{\ln x^2}{x}$ و $f(x)=1-\frac{\ln x^2}{x}$ الدالة العددية المعرفة على $f(x)=1-\frac{\ln x^2}{x}$ المتعامد المتجانس $f(x)=1-\frac{\ln x^2}{x}$ المتعامد المتجانس $f(x)=1-\frac{\ln x^2}{x}$

. المنائج بيانيا و $\lim_{x \to \infty} f(x)$ ، $\lim_{x \to \infty} f(x)$ ، و $\lim_{x \to \infty} f(x)$ ، المنائج بيانيا ثم فسر النتائج بيانيا (1

. $f'(x) = \frac{-2 + \ln x^2}{x^2}$ ، x معدوم غير معدوم عدد حقيقي غير معدوم (2

بـ استنتج اتجاه تغير الدالة f ، ثم شكل جدول تغير اتها.

(3) أثبت أن المنحنى $\binom{C_f}{y}$ يقطع المستقيم $\binom{\Delta}{y}$ ذي المعادلة $\binom{\Delta}{y}$ في نقطتين يطلب تعيين إحداثياتهما.

بانتج؟ ماذا تستنتج؟ ماذا تستنتج؟ (4

 $\alpha \in]-0.71$; -0.70 حيث α حيث α تقبل حلا وحيدا α تقبل حلا وحيدا (5

في نقطتين يطلب تعيين احداثيات كل A(0,1) أثبت أن المنحنى C_f يقبل مماسا T يشمل النقطة A(0,1) ويمس المنحنى T في نقطتين يطلب تعيين احداثيات كل منهما ، اكتب معادلة المماس T .

. $\left(C_{f}\right)$ و $\left(T\right)$ من کلا من

y=mx+1 : المعرفة بمعادلاتها المستقيمات $\left(d_{_{m}}
ight)$ المعرفة بمعادلاتها m

. (d_m) تنتمي إلى المستقيمات M(0,1) ، النقطة النقطة عدد حقيقي المستقيمات . أ- تحقق أنه من أجل كل عدد حقيقي

f(x) = mx + 1: عدد حلول المعادلة وحسب قيم الوسيط عدد حلول المعادلة

الدالة العددية المعرفة على * الدالة العددية المعرفة على البياني المعلم السابق. $h(x)=1+rac{\ln x^2}{|x|}$ الدالة العددية المعرفة على البياني المعلم السابق.

أ- بين أن h دالة زوجية.

. علل ذلك ، (C_h) . أنشى h على ذلك .

تمنياتي لكم بالتوفيق والنجاح

العلامة		7.1.34
مجموع	مجزأة	عناصر الإجابة
0,5	0,5	المتمريين الأولى (04 ن) $u_{n+1} - 3 = \frac{\left(u_n - 3\right)^2}{2u_n} > 0$ وعليه $p\left(n+1\right)$: $u_{n+1} > 3$ محققة و $p\left(0\right)$ محققة و $p\left(n+1\right)$ وعليه $p\left(n\right)$
1	1	. بما أن (u_n) متناقصة ومحدودة من الأسفل بالعدد 4 فهي متقاربة . $u_{n+1}-u_n=rac{(3+u_n)(3-u_n)}{2u_n}<0$ لدينا: $(2-u_n)$
1,5	0,5	$0 < \frac{u_n - 3}{2u_n} \le \frac{1}{2}$ ومنه $\frac{1}{12} < \frac{1}{2u_n} \le \frac{1}{6}$ و $0 < u_n - 3 \le 3$ و عليه (u_n) متناقصة) وعليه (u_n) متناقصة) (u_n) متناقصة) وعليه (u_n)
		$u_{n+1} - 3 \le \frac{1}{2} (u_n - 3)$ أي $\frac{(u_n - 3)^2}{2u_n} \le \frac{1}{2} (u_n - 3)$ وعليه
	0,5	. $u_n - 3 \le \frac{1}{2}(u_{n-1} - 3)$ $u_2 - 3 \le \frac{1}{2}(u_1 - 3)$ $u_1 - 3 \le \frac{1}{2}(u_0 - 3)$
		و بالضرب طرفا لطرف نجد $(u_0-3)\left(\frac{1}{2}\right)^n$ أي $u_n-3\leq 3\left(\frac{1}{2}\right)^n$ و بالضرب طرفا لطرف نجد u_0-3
	0,5	. $\lim_{n\to +\infty}u_n=3$ إذن $\lim_{n\to +\infty}u_n=3$ ومنه $\lim_{n\to +\infty}3\left(rac{1}{2} ight)^n=0$ جـباستعمال النهاية بالمقارنة لدينا
1	0,5	. $0 < u_{n-1} - 3 \le 3 \left(\frac{1}{2}\right)^{n-1}$ $0 < u_1 - 3 \le 3 \left(\frac{1}{2}\right)^1$ و $0 < u_0 - 3 \le 3 \left(\frac{1}{2}\right)^0$ ا- لدينا: $0 < u_0 - 3 \le 3 \left(\frac{1}{2}\right)^0$ و $0 < u_0 - 3 \le 3 \left(\frac{1}{2}\right)^0$
		$. \ 0 < v_n - 3n \leq 3 \left(\frac{1 - \left(\frac{1}{2}\right)^n}{1 - \frac{1}{2}} \right)$ اي $0 < v_n - 3n \leq 3 \left(1 + \frac{1}{2} + \left(\frac{1}{2}\right)^2 + \dots + \left(\frac{1}{2}\right)^{n-1} \right)$ بالجمع طرفا لطرف نجد
		. $3n < v_n \le 6 \left(1 - \frac{1}{2^n}\right) + 3n$ ومنه $0 < v_n - 3n \le 6 \left(1 - \frac{1}{2^n}\right)$ ومنه
	0,5	. $\lim_{n \to +\infty} \frac{v_n}{n} = 1$ إذن $1 < \lim_{n \to +\infty} \frac{v_n}{n} \le 1$ ومنه $1 < \lim_{n \to +\infty} \frac{v_n}{n} \le 1$ ومنه $1 < \lim_{n \to +\infty} \frac{v_n}{n} \le 1$ ومنه $1 < \lim_{n \to +\infty} \frac{v_n}{n} \le 1$ إذن $1 < \lim_{n \to +\infty} \frac{v_n}{n} \le 1$ ومنه $1 < \lim_{n \to +\infty} \frac{v_n}{n} \le 1$
2	3×0,25	التمرين الثاني (40 ن) أ- القيم الممكنة لـ X هي: 0 , 1و 2. $X = x_i$ $X = 0$ $X = 1$ $X = 2$ $X = 0$ $X = 1$ $X = 2$ $X = 0$ $X = 1$ $X = 2$ $X = 0$ $X = 1$ $X = 2$ $X = 1$ $X = 1$ $X = 2$ $X = 1$ $X = 1$ $X = 2$ $X = 1$ $X $
	3×0,25	$P(X = x_i) \begin{vmatrix} \frac{35}{84} & \frac{42}{84} & \frac{7}{84} \end{vmatrix} \qquad P(X = 1) = \frac{\frac{35}{2} + \frac{7}{84}}{C_9^3} = \frac{\frac{15}{84}}{84} P(X = 0) = \frac{\frac{7}{6}}{C_9^3} = \frac{84}{84}$
	0,5	$.P(X=2) = rac{C_2^2 imes C_7^2}{C_9^3} = rac{7}{84}$. $.E(X) = \left(0 imes rac{35}{84}\right) + \left(1 imes rac{42}{84}\right) + \left(2 imes rac{7}{84}\right) = rac{56}{84} : E(X)$ بــالامل الرياضياتي
2	3×0,5	$P(C) = \frac{A_4^3}{A_9^3} = \frac{24}{504} = \frac{1}{21} P(B) = 3 \times \frac{A_4^2 + A_5^1}{A_9^3} + \frac{A_4^3}{A_9^3} = \frac{204}{504} = \frac{17}{42} P(A) = \frac{A_4^3 + A_3^3}{A_9^3} = \frac{30}{504} = \frac{5}{84} - 1 (2)$
	0,5	$P_{A}(C) = \frac{P(A \cap C)}{P(A)} + \frac{P(C)}{P(A)} = \frac{1/21}{5/84} = \frac{4}{5}$

		(* 05) 2 tiệt *
0,75	$3 \times 0,25$	$S = \{2; -1 + i\sqrt{3}; 1 - i\sqrt{3}\}$ د $S = \{2; -1 + i\sqrt{3}; 1 - i\sqrt{3}\}$
	$3 \times 0,25$. c و b , a و b , a أ- تعليم النقط:
1,75	2×0,25	$\left \frac{z_B - z_C}{z_A - z_C}\right = \frac{BC}{AC} = 1$ ولديناء ، $\frac{z_B - z_C}{z_A - z_C} = \frac{1}{2} + \frac{\sqrt{3}}{2} = e^{i\frac{\pi}{3}} - \frac{1}{2}$ $\operatorname{arg}\left(\frac{z_B - z_C}{z_A - z_C}\right) = \left(\overline{CA}, \overline{CB}\right) = \frac{\pi}{3}$ ومنه ABC متقايس الأضلاع.
	2×0,25	O ومنه $O=0$ أي مركز ثقل المثلث $O=0$ هي مبدأ المعلم $C=0$ ومنه $C=0$ أي مركز الدائرة $C=0$ هي مبدأ المعلم $C=0$ ونصف قطر ها $C=0$ هي مبدأ المعلم $C=0$. $C=0$
1,25	3×0,25	$(x+2)^2 + y^2 = 4$ ومنه لدينا $z = x + iy$ و عليه $z = x + y^2$ و عليه $z = x + iy$ تكافى $z = x + iy$
1,23	$2 \times 0,25$	إذن (Γ) هي الدائرة مركز ها $\Omega(-2,0)$ ونصف قطر ها Ω .
	2 × 0, 23	$A= z_A-z_\Omega =2$ ومنه النقطتان A و $B= z_B-z_\Omega =2$ ومنه النقطتان المي الدائرة $\Omega A= z_A-z_\Omega =2$.
1,25	$2 \times 0,25$	ومنه $a = \frac{b}{1-a}$ ومنه $a = \frac{1}{2} + i\frac{\sqrt{3}}{2}$ ومنه $a = \frac{\pi}{3}$ ومنه $a = \frac{\pi}{3}$ ا و لاینا $a = \frac{\pi}{3}$ و الدینا $a = \frac{\pi}{3}$
		. $z_C = \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)z_B + 1 + i\sqrt{3} = 2$ العبارة المركبة: $z' = \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)z + 1 + i\sqrt{3}$ العبارة المركبة: $z' = \left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)z + 1 + i\sqrt{3}$
	$2\times0,25$. الرباعي $ABCD$ معين . $z_D = \left(\frac{1}{2} + i \frac{\sqrt{3}}{2}\right) z_C + 1 + i \sqrt{3} = 2 + i 2 \sqrt{3}$
		$\frac{\pi}{3}$ جـ صورة المجموعة (Γ) هي دائرة (Γ') مركزها Ω صورة النقطة Ω بالدوران الذي مركزه A وزاويته
	0,25	. $z_{\Omega'}=\left(\frac{1}{2}+i\frac{\sqrt{3}}{2}\right)$ حيث $z_{\Omega}=1+i\sqrt{3}=0$ مرکزها $z_{\Omega'}=\left(\frac{1}{2}+i\frac{\sqrt{3}}{2}\right)$ حيث $z_{\Omega}=1+i\sqrt{3}=0$
		المتمرين الرابع (07 ن)
1,25	$4\times0,25$	$ \lim_{x \to +\infty} \left(1 - \frac{2\ln x}{x} \right) = 1 \cdot \lim_{x \to -\infty} \left(1 - \frac{2\ln \left(-x \right)}{x} \right) = \lim_{x \to -\infty} \left(1 + \frac{2\ln \left(-x \right)}{\left(-x \right)} \right) = 1 $
		$\lim_{x \to \infty} f(x) = +\infty \cdot \lim_{x \to \infty} f(x) = -\infty$
	0,25	$\hat{y}=1$ يقبل مستقيما مقاربا معادلته $\hat{y}=1$ عند $\hat{y}=0$ و مستقيما مقاربا هو حامل محور التراتيب بجوار $\hat{y}=0$.
1	0,25	$f'(x)$ اشارة $f'(x)=rac{-2+\ln x^2}{x^2}$ من $f'(x)=rac{-2+\ln x^2}{x^2}$ من اشارة $f'(x)=\frac{-2+\ln x^2}{x^2}$ من اشارة (2)
	0,25	$y = -\infty$ اشارة (x) اشارة (x) اشارة (x) اشارة (x) اشارة (x) المراة (x)
	0,5	$f'(x) + 0 - 0 + 0$ $f(x) = \frac{e+2}{e}$ 1
0,5	$2\times0,25$	$\cdot (C_f) \cap (\Delta) = \{M(1,1); N(-1,1)\}$ ومنه $x = 1$ أو $x = 1$ وعليه $x = -1$ ومنه $x = -1$
0,25	0,25	$\omega(0,1)$ استنتاج النقطة $\omega(0,1)$ هي مركز تناظر للمنحنى $\omega(0,1)+f(-x)+f(x)=0$ استنتاج النقطة .
-,	-,	$(-j)^{-1} = -1 = -\infty (0,1) = 0 j \in \mathbb{N} \cap J (N) = 2$

0,25	0,25	ومنه $f\left(-0,70\right)pprox -0,02$ و $f\left(-0,71\right)pprox 0,04$ و الدينا $f\left(-0,70\right)pprox -0,02$ ومنه $f\left(-0,70\right)$
		$f(\alpha) = 0$ بحيث $g(\alpha) = 0$
0,75	0.5	لدينا معادلة المماس $(T): (x_0)(x-x_0)+f(x_0)$ ومنه $y=f'(x_0)(x-x_0)+f(x_0)$ أي $y=f'(x_0)(x-x_0)+f(x_0)$ لدينا معادلة المماس $y=f'(x_0)(x-x_0)+f(x_0)$
	0,5	يقبل مماسا (T) يقبل مماسا $x_0 = -\sqrt{e}$ و عليه $x_0 = \sqrt{e}$ و منه $x_0^2 = e$ أو $x_0 = \sqrt{e}$ وبالتالي $x_0 = \sqrt{e}$ وعليه $x_0^2 = 1$ ومنه $x_0^2 = 1$ ومنه $x_0^2 = 1$
	0,25	$-\sqrt{e}$ و يمس المنحنى C_f في النقطتين اللتين فاصلتهما \sqrt{e} و يمس المنحنى $A(0,1)$
		$y = \frac{-1}{e}x + 1$: (T) معادلة المماس
1	0,25 + 0,5 + 0,25	. (C_h) ; (C_f) \mathfrak{g} (T) similar (7)
	0,25	. (d_m) تنتمي إلى المستقيمات (m_m) ومنه من أجل كل عدد حقيقي أبناء (m_m) تنتمي إلى المستقيمات (m_m)
1,25	4×0,25	بــ المناقشة البيانية: • من اجل $m<-rac{1}{e}$ المعادلة لا تقبل حلا. • من اجل $m<-rac{1}{e}$ المعادلة تقبل اربعة حلول. • من اجل $m<-rac{1}{e}$ المعادلة تقبل حلين مضاعفين . • من اجل $m=-rac{1}{e}$ المعادلة لا تقبل حلين مضاعفين .
		e
	0,25	ا ا من أجل $x \in \square$ لدينا $x \in \square$ لدينا $x \in \square$ لدينا $x \in \square$ الدينا $x \in \square$
0,75	0,5	$ \begin{cases} h(x) = f(-x) & ; x > 0 \\ h(x) = f(x) & ; x < 0 \end{cases} \begin{cases} h(x) = 1 + \frac{\ln x^2}{x} & ; x > 0 \\ h(x) = 1 + \frac{\ln x^2}{-x} & ; x < 0 \end{cases} $
		إذن $\binom{C_h}{k}$ ينطبق على $\binom{C_f}{k}$ في المجال $-\infty$, 0 وبما ان k زوجية فان $\binom{C_h}{k}$ متناظر بالنسبة الى حامل محور التراتيب.