المستوى والشعبة: 3 علوم تجريبية المدة: 3 ساعات

إختبار الدورة الثانية في مادة الرياضيات

التمرين الأول: (4.5نقط)

نعتبر زهري نرد كل منهما مرقم من 1 إلى 6 ، زهري النرد متطابقان في المظهر لكن أحدهما مزيف والآخر غير مزيف.

إحتمال ظهور رقم 6 بالنسبة لزهر النرد المزيف يساوي $\frac{1}{3}$ (النتائج تعطى على شكل كسور غير قابلة للإختزال).

الذي يهتم X الذي غير المزيف ثلاث مرات على التوالي ، ونرمز بالى المتغير العشوائي X الذي يهتم المات X

بعد د المرات التي نحصل فيها على رقم 6.

X أعين قيم المتغير العشوائي

$$P(X=2) = \frac{5}{72}$$
 بـ تحقق أن ،

جــعرف قانون إحتمال المتغير العشوائي X، أحسب أمله الرياضياتي.

2. نختار عشوائيا أحد زهري النرد ، ثم نرمي زهر النرد المختار ثلاث مرات على التوالي .

(الإختياريكون متساوي الإحتمال)

نعتبر الحادثين التاليتين: В "زهر النرد المختار هو زهر النرد غير المزيف"

A "الحصول على رقم 6 مرتين بالضبط".

أ-مستعينا بشجرة الإحتمالات، أحسب إحتمال الحادثين التاليتين:

"زهر نرد المختار غير مزيف والحصول على رقم 6 مرتين بالضبط" وهرة النرد المختار مزيف والحصول على رقم 6 مرتين بالضبط"

$$P(A) = \frac{7}{48}$$
 بـ إستنتج أن

3. تحصلنا على رقم 6 مرتين بالضبط ماهو إحتمال أن يكون زهر النرد المختار مزيف.

التمرين الثاني: (4.5نقط)

.
$$\begin{cases} z_1-z_2=2i\\ z_1-iz_2=\Big(1+\sqrt{3}\Big)\Big(-1+i\Big) \end{cases}$$
 : $z_2=z_1$.
$$\vdots$$
 2 و $z_1=z_2=0$.
$$\vdots$$
 3 و $z_1=0$.
$$\vdots$$
 4 و $z_2=0$.
$$\vdots$$
 3 و $z_1=0$.
$$\vdots$$
 4 و $z_2=0$.
$$\vdots$$
 6 و $z_1=0$.
$$\vdots$$
 8 و $z_1=0$.
$$\vdots$$
 9 (z_1=0) .

. بـ أكتب كل من $z_{\scriptscriptstyle 1}$ و و على الشكل الأسي

. $(O; \vec{u}, \vec{v})$ المستوي المركب منسوب الى المعلم المتعامد والمتجانس 2

أ ـ مثل النقط A ، B و C صور الأعداد a ، a و a صور الأعداد a ، a صور الأعداد أثر الإنشاء.

. $\left[A\,C\right]$ بـ عين العدد المركب z_0 لاحقة النقطة H منتصف القطعة

. $z_{\scriptscriptstyle 0}$ عين عمدة للعدد

$$\cos\left(\frac{5\pi}{12}\right)$$
 و $\cos\left(\frac{5\pi}{12}\right)$ د۔إستنتج قيمتي

. $\left|z^2+2\sqrt{3}z+3\right|=1$: يحيث: M ذات اللاحقة S مجموعة النقط النقط M

. عين طبيعة (F) ، يطلب تحديد عناصرها المميزة .

.
$$\left(z-z_{_1}\right)\left(\overline{z}-z_{_2}\right)=\left(z-z_{_2}\right)\left(\overline{z}-z_{_1}\right)$$
 : غات اللاحقة z بحيث النقط d ذات اللاحقة .4

. عين طبيعة (E) ، يطلب تحديد عناصرها المميزة .

صفحة1من2

التمرين الثالث: (4.5نقط):

$$u_{n+1} = \frac{1}{2} \left(u_n + \frac{1}{u_n} \right) : n$$
 المتتالية المعرفة ب $u_0 = 2 : u_0 = 2$ ومن أجل كل عدد طبيعي $u_0 = 2 : u_0 = 2$

 $u_n \ge 1$: n برهن أنه من أجل كل عدد طبيعي (1

 (u_n) اًـ بين أن المتتالية (u_n) متناقصة ثم أستنتج أنها متقاربة . عين نهاية (2

$$v_n = \frac{u_n - 1}{u_n + 1}$$
 : على \mathbb{N} على \mathbb{N} على (v_n) على 3

 $v_{n+1} = v_n^2$: n غدد طبيعي : n غدد الجل ڪل عدد الج

 $\cdot (v_n)$ بين أن من أجل كل عدد طبيعي n : n نام أن من أجل كل عدد طبيعي n : n

$$v_n = \left(\frac{1}{3}\right)^{2^n}$$
 : n عدد طبیعي من أجل کل عدد من أجل کا عدد عبرهن بالتراجع

n د) استنتج عبارة u_n بدلالت

 $S_n = v_0 \times v_1 \times v_2 \times \dots \times v_n$: شيح S_n الجداء n الجداء (4

التمرين الرابع: (6.5)

- $g\left(x
 ight) = (x+2)e^{x-2} 2$: بالدالة المعرفة على $g\left(I
 ight)$
 - . $\lim_{x \to +\infty} g(x)$ و $\lim_{x \to \infty} g(x)$ أحسب .1
 - g أدرس إتجاه تغير الدالة g.
- - $f(x) = x^2 x^2 e^{x-2}$: به الله معرفة على f(II)
 - . $\left(O; ec{t}, ec{f} \right)$ تمثيلها البياني في المستوي المنسوب على المعلم المتعامد والمتجانس المستوي المنسوب
 - f(x) = 0 عل في \Re المعادلة.
 - . $\lim_{x \to +\infty} f(x)$ و $\lim_{x \to -\infty} f(x)$.2
- - $f(\alpha)$ نم أعط حصر الـ $f(\alpha) = \frac{\alpha^3}{\alpha + 2}$ أن تحقق أن أعط حصر الـ
 - . \mathbb{R} على على المنحنى الممثل للدالة $x\mapsto x^2$ على 4.
 - اً بین أن $\lim_{x\to -\infty} (f(x)-x^2)=0$ ثم فسر النتیجة بیانیا .
 - (P) و (C_f) و المنحنيين النسبية النسبية المنحنيين المنحنيين
- 5. عين معادلة كل من المماسين (T) و (T') للمنحنى (C_f) عند النقطتين ذات الفاصلتين 2 و (T') على الترتيب.
 - . (P) و (C_f) (T') (T') و 6.
 - f(x) = -4x + m : x يانيا حسب قيم الوسيط الحقيقي m عدد حلول المعادلة ذات المجهول الحقيقي x

بالتوفيق والسداد

صفحة2من2

 $u_{n+1} = \frac{5u_n-1}{u_n+3}$ ، $u_n = 2$ فعتبر المتتالية (u_n) المعرفة على $u_n = 2$ بحدها الأول

- $u_n = 5 \frac{16}{u_n + 3}$ ، n بين أنه من أجل كل عدد طبيعي .1
- $1 \le u_n \le 2$ ، برهن بالتراجع أنه من أجل كل عدد طبيعي 2.
- $u_{n+1} u_n = -\frac{(u_n 1)^2}{u_n + 3}$ ، $u_{n+1} u_n = -\frac{(u_n 1)^2}{u_n + 3}$. استنتج اتجاه تغیر المتتالیت 3.
 - لتتالية (u_n) متقاربة. 4.
 - $v_n = \frac{1}{u_n 1}$:ب نعتبر المتتالية (v_n) المعرفة من أجل كل عدد طبيعي $v_n = \frac{1}{u_n 1}$.5

أ) بين أن المتتالية (v_n) حسابية يطلب تحديد حدها الأول و أساسها.

 v_n ب) عبر عن v_n بدلالت u_n ب

 $\cdot (u_n)$ ج) استنتج نهایۃ المتالیۃ (ج