المراجعة 01

الدالة الأسية - المتتاليات - الاحتمالات

- 2017-2018

التمرين 1

★★★☆☆ ② 50

 $g(x) = 1 - (2x + 1)e^x$ باجزء الأول نعتبر الدالة g المعرفة على \mathbb{R} با

- $\lim_{x \to +\infty} g(x)$ و $\lim_{x \to -\infty} g(x)$ احسب 1.
- 2. ادرس اتجاه تغيّر الدالة g ثمّ شكل جدول تغيّراتها
 - g(x) و حدّد حسب قیم x، إشارة g(0) و حدّد

 $f(x) = x(e^x - 1)^2$: المجال بما يلى $f(x) = x(e^x - 1)^2$ المجال بما يلى

 $(0; \overrightarrow{t}, \overrightarrow{f})$ هو تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد و المتجانس (\mathcal{C}_f)

- $\lim_{x\to\infty} f(x)$ احسب.
- (\mathcal{C}_f) بيّن أنّ المستقيم (Δ) ذا المعادلة y=x هو مقارب للمنحنى (Δ) .2
 - (ب) ادرس وضعية المنحنى (C_f) بالنسبة إلى المستقيم (Δ)
- $f'(x) = (1 e^x)g(x)$: فإنّ $-\infty$ بيّن أنّه من أجل كل عدد حقيقي x من x من أجل كل عدد حقيقي x
- 4. استنتج حسب قيم x إشارة f'(x) ثمّ شكل جدول تغيّرات الدالة f. برّر أنّ المنحني f'(x) يقبل نقطة انعطاف يطلب تعيين إحداثياتها
 - رك) و المنتقيم ((C_f)) و المنحنى ((C_f)) أنشئ
 - (OA) هي النقطة من المنحنى (\mathcal{C}_f) ذات الفاصلة 1. اكتب معادلة للمستقيم (A

x ناقش بيانيا حسب قيم العدد الحقيقي x عدد و إشارة حلول المعادلة التالية ذات المجهول الحقيقي x : f(x) = mx

 $h(x) = x (e^{-|x|} - 1)^2 : ب المعرفة على <math>\mathbb{R}$ ب الدالة المعرفة المعرفة على h

- 1. ادرس قابلية اشتقاق الدالة h عند 0 ، ماذا تستنتج $^{\circ}$
- 2. بيّن أنّ h هي دالة فردية ثمّ استنتج طريقة لانشاء منحناها دون دراسة تغيّراتها
 - 3. أنشئ منحنى الدالة h في المعلم السابق

التمرين 2

★★★☆☆ ② 40

$$\begin{cases} w_0 + w_1 + w_2 = 26 \\ w_0 + w_1 + w_2 = 26 \end{cases}$$
 . حدودها الثلاثة الأولى تحقق (w_n) متتالية هندسية متزايدة معرفة على (w_n) ، حدودها الثلاثة الأولى تحقق (w_n) متتالية هندسية متزايدة معرفة على (w_n) ، حدودها الثلاثة الأولى تحقق (w_n) متتالية هندسية متزايدة معرفة على (w_n) ، حدودها الثلاثة الأولى تحقق (w_n) ، حدودها الثلاثة الأولى المتعادل (w_n)

n عيّن w_n بدلالة w_2 عيّن w_1 ، w_0 عيّن

$$u_{n+1} = \frac{2u_n}{u_n+1}$$
، n و من أجل كل عدد طبيعي $u_0 = \frac{1}{2}$ و من أجل كل عدد طبيعي $u_0 = \frac{1}{2}$. ك لتكن $u_n = \frac{1}{2}$ المتتالية العددية المعرّفة على $u_n = \frac{1}{2}$ برهن بالتراجع أنّه ، من أجل كل عدد طبيعي $u_n = \frac{1}{2}$ ()) برهن بالتراجع أنّه ، من أجل كل عدد طبيعي

- (u_n) ادرس اتجاه تغیّر المتتالیة (u_n)
- $x^2 x = 0$ استنتج أنّ المتالية (u_n) تتقارب نحو عددا حقيقيا ℓ هو حل للمعادلة (ج)
 - $v_n=1-rac{\ell}{u_n}$: كما يلي المتتألية المعرّفة على $\mathbb N$ كما يلي المتتألية المعرّفة على
 - v_0 برهن أنّ (v_n) متتالية هندسية يطلب تعيين أساسها q و حدّها الأول v_0
 - $u_n=rac{2^n}{1+2^n}$ ، بيّن أنّه من أجل كل عدد طبيعي v_n بدلالة n ثمّ بيّن أنّه من أجل
 - 4. اكتب بدلالة n :
 - $S_1 = v_0 w_0 + v_1 w_1 + \dots + v_n w_n$ (1)
 - $S_2 = \frac{1}{u_0} + \frac{2}{u_1} + \dots + \frac{2^n}{u_n} \quad (-1)$
 - $P_n = \left(5 \frac{5}{u_0}\right) \times \left(5 \frac{5}{u_1}\right) \times \dots \times \left(5 \frac{5}{u_n}\right) \tag{3}$

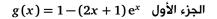
التمرين 3

★★★☆☆ ② 40

صندوق A يحتوي على كرة حمراء و 3 كرات خضراء، صندوق B يحوي كرتين حمراوين و كرتين سوداوين، الكرات كلّها لا نميّز بينها باللمس

- 1. لدينا نرد مكعب غير مزيّف وجوهه مرقمة من 1 إلى 6. نرمي هذا النرد مرة واحدة ، إذا تحصلنا على مضاعف لد a نسحب عشوائيا كرة من الصندوق a ، في الحالات الأخرى نسحب عشوائيا كرة من الصندوق a
 - (۱) احسب احتمال سحب کرة سوداء
 - (ب) احسب احتمال سحب كرة حمراء
 - (ج) ما احتمال أن تكون الكرة قد سُحبت من الصندوق B علما أنّها حمراء $^{\circ}$
 - 2. نقوم بظم كل الكرات في صندوق واحد ثمّ نسحب 3 كرات على التوالي و دون إرجاع
 - $\frac{1}{4}$ يساوي " الكرة المسحوبة الثالثة هي سوداء " يساوي $\frac{1}{4}$
 - (ب) احسب احتمال كل من الحادثتين " الكرة المسحوبة الأولى سوداء " و " الكرة المسحوبة الثالثة سوداء "

حل التمرين 1



$$\lim_{x \to +\infty} g(x) = -\infty \underset{x \to -\infty}{\text{lim}} g(x) = 1 \cdot 1$$

$$g'(x) = (-3-2x)e^x$$
 .2

x	-∞		$-\frac{3}{2}$		+∞
g'(x)		+	0	_	
g	0-		$\frac{2}{\sqrt{e^3}} + 1$,

$$g(0) = 0.3$$

x	-∞		0		+∞
g(x)		+	0	_	

$$f(x) = x(e^x - 1)^2$$
 الجزء الثانى

$$\lim_{x \to -\infty} f(x) = -\infty .1$$

$$\lim_{x \to -\infty} (f(x) - x) = \lim_{x \to -\infty} x e^{x} (e^{x} - 2) = 0 \quad (1) \quad .2$$

$$f(x) - x$$
 اشارة الفرق (ب

x	-∞		0		ln(2)		1
f(x)-x		+	0	_	0	+	

المنحنى (\mathcal{C}_f) يقع فوق المستقيم (Δ) في كل من المجالين $]0; \infty - [$ و $]\infty; 0$ و المجالين المج]0; ln(2)[في المجال (Δ) تحت

$$f'(x) = (1 - e^x)g(x)$$
 .3

$$f$$
 الدالة $f'(x)$ و جدول تغيّرات الدالة f

x	-∞		0		1
$1-e^x$		+	0	_	
g(x)		+	0	_	
f'(x)		+	0	+	

x	-∞		0		1
f'(x)		+	0	+	
f	-8		0_		$\rightarrow f(1)$

o فيها (الموازى لمحور الفواصل) يقطع (\mathcal{C}_f) في

(
$$\mathcal{C}_f$$
) و المنتقيم (Δ) و المنتقيم (5.

у '	1	• A	
1 -	-		(\mathfrak{C}_h)
	<u>:</u>		x
	1	Ĺ	A
(\mathfrak{C}_f) \triangle			

$$(OA)$$
 هي معادلة للمستقيم $y=(\mathrm{e}-1)^2x$.6 مناقشة المعادلة $y=mx$

عدد و إشارة الحلول	قیم m
حل معدوم	<i>m</i> ≤ 0
حل معدوم و حلان مختلفا الإشارة	0 < m < 1
حل معدوم و حل موجب	$1 \le m \le (\mathrm{e} - 1)^2$
حل معدوم	$m \leq (e-1)^2$

$$h(x) = x (e^{-|x|} - 1)^2$$
 الجزء الثالث $\frac{h(x) - h(0)}{x - 0} = \lim_{x \to 0} \frac{h(x) - h(0)}{x - 0} = 0$.1 $\frac{h(x) - h(0)}{x - 0} = 0$.1 إذن الدالة h قابلة للاشتقاق عند 0 و $0 = 0$. و تمثيلها البياني يقبل في النقطة 0 مماسا موازيا لمحور الفواصل

.
$$h(-x)=-h(x)$$
 و $-x\in\mathbb{R}$: $x\in\mathbb{R}$. 2. من أجل h فردية.

.
$$h(x) = f(x) : x \in]-\infty$$
 . $h(x) = f(x) : x \in]-\infty$. $h(x) = f(x) :$